login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174555
Triangle read by rows:s(n,m)=Sum[StirlingS2[n, k]*StirlingS1[n - k, m]* Binomial[n, k]*(-1)^(m - k), {k, 0, n}];t[n,m]=s[n,m]+s[n,n-m]
0
2, -1, -1, 1, 4, 1, -1, -15, -15, -1, 1, 78, 108, 78, 1, -1, -635, -935, -935, -635, -1, 1, 7605, 12315, 9600, 12315, 7605, 1, -1, -123396, -225071, -147700, -147700, -225071, -123396, -1, 1, 2570484, 5190598, 3588508, 1936340, 3588508, 5190598
OFFSET
0,1
COMMENTS
Row sums are:
{2, -2, 6, -32, 266, -3142, 49442, -992336, 24635522, -738902954, 26271105662,...}.
FORMULA
s(n,m)=Sum[StirlingS2[n, k]*StirlingS1[n - k, m]* Binomial[n, k]*(-1)^(m - k), {k, 0, n}];
t[n,m]=s[n,m]+s[n,n-m]
EXAMPLE
{2},
{-1, -1},
{1, 4, 1},
{-1, -15, -15, -1},
{1, 78, 108, 78, 1},
{-1, -635, -935, -935, -635, -1},
{1, 7605, 12315, 9600, 12315, 7605, 1},
{-1, -123396, -225071, -147700, -147700, -225071, -123396, -1},
{1, 2570484, 5190598, 3588508, 1936340, 3588508, 5190598, 2570484, 1},
{-1, -66359889, -145212474, -112391706, -45487407, -45487407, -112391706, -145212474, -66359889, -1},
{1, 2069254630, 4829689875, 4139150270, 1738086315, 718743480, 1738086315, 4139150270, 4829689875, 2069254630, 1}
MATHEMATICA
t[n_, m_] = Sum[StirlingS2[n, k]*StirlingS1[n - k, m]*Binomial[ n, k]*(-1)^(m - k), {k, 0, n}];
Table[Table[t[n, m] + t[n, n - m], {m, 0, n}], {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A157114 A156786 A156141 * A157113 A214712 A213330
KEYWORD
sign,tabl,uned
AUTHOR
Roger L. Bagula, Mar 22 2010
STATUS
approved