login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174553
Triangle read by rows:t(n,m)=Sum[StirlingS2[n, k]*Eulerian[n - k + 1, m]*(-1)^(n - k - m)*k!, {k, 0, n}]
0
1, 1, 1, 1, 2, 1, 1, -9, 3, 1, 1, -56, -114, 4, 1, 1, -55, -590, -770, 5, 1, 1, 426, 6735, -2920, -4185, 6, 1, 1, -245, 47733, 216923, -2653, -20391, 7, 1, 1, -16372, -451052, 562016, 4011910, 109676, -93212, 8, 1, 1, -1011, -2697444, -49492896, -15614034
OFFSET
0,5
COMMENTS
Row sums are:
{1, 2, 4, -4, -164, -1408, 64, 241376, 4122976, -8411008,...}.
FORMULA
t(n,m)=Sum[StirlingS2[n, k]*Eulerian[n - k + 1, m]*(-1)^(n - k - m)*k!, {k, 0, n}]
EXAMPLE
{1},
{1, 1},
{1, 2, 1},
{1, -9, 3, 1},
{1, -56, -114, 4, 1},
{1, -55, -590, -770, 5, 1},
{1, 426, 6735, -2920, -4185, 6, 1},
{1, -245, 47733, 216923, -2653, -20391, 7, 1},
{1, -16372, -451052, 562016, 4011910, 109676, -93212, 8, 1},
{1, -1011, -2697444, -49492896, -15614034, 58337946, 1465644, -409224, 9, 1}
MATHEMATICA
<< DiscreteMath`Combinatorica`
t[n_, m_] = Sum[StirlingS2[n, k]*Eulerian[n - k + 1, m]*(-1)^( n - k - m)*k!, {k, 0, n}];
Table[Table[t[n, m], {m, 0, n - 1}], {n, 1, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A260374 A157109 A185814 * A167015 A124522 A016540
KEYWORD
sign,tabl,uned
AUTHOR
Roger L. Bagula, Mar 22 2010
STATUS
approved