The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A167015 Triangle T, read by rows, where T(n,k) = [T^n](n-k-1,0); i.e., where row n of T equals the initial n terms of column 0 in matrix power T^n, reversed and with an appended '1', for n>0, with T(0,0)=1. 8
 1, 1, 1, 2, 1, 1, 9, 3, 1, 1, 70, 14, 4, 1, 1, 755, 105, 20, 5, 1, 1, 10166, 1080, 149, 27, 6, 1, 1, 161350, 13916, 1491, 203, 35, 7, 1, 1, 2917524, 212634, 18612, 2002, 268, 44, 8, 1, 1, 58811631, 3723198, 275856, 24429, 2628, 345, 54, 9, 1, 1, 1302452122, 73047825 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Although only the right portion of this triangle is shown here, by definition this triangular matrix can be extended infinitely to the left as well. LINKS Table of n, a(n) for n=0..56. EXAMPLE Triangle T begins: 1; 1,1; 2,1,1; 9,3,1,1; 70,14,4,1,1; 755,105,20,5,1,1; 10166,1080,149,27,6,1,1; 161350,13916,1491,203,35,7,1,1; 2917524,212634,18612,2002,268,44,8,1,1; 58811631,3723198,275856,24429,2628,345,54,9,1,1; 1302452122,73047825,4699180,353300,31562,3385,435,65,10,1,1; 31362843270,1581256303,89993827,5877619,447568,40227,4290,539,77,11,1,1; 814897356483,37350588290,1907644760,110140398,7295576,561607,50662,5361,658,90,12,1,1; 22712570157056,954796686233,44253266889,2289730547,134056234,8995558,698737,63128,6617,793,104,13,1,1; 675859219349848,26246234745486,1113845999245,52215711142,2736921663,162397676,11026087,862680,77910,8078,945,119,14,1,1; ... in which row n is formed from column 0 of T^n. Matrix square T^2 begins: 1; 2, 1; 5, 2, 1; 23, 7, 2, 1; 171, 35, 9, 2, 1; 1770, 259, 49, 11, 2, 1; 23128, 2579, 369, 65, 13, 2, 1; 359326, 32237, 3614, 503, 83, 15, 2, 1; ... where column 0 of T^2 forms row 2 of T: [2,1,1]. Matrix cube T^3 begins: 1; 3, 1; 9, 3, 1; 43, 12, 3, 1; 312, 64, 15, 3, 1; 3121, 474, 88, 18, 3, 1; 39616, 4615, 675, 115, 21, 3, 1; 602135, 56173, 6538, 918, 145, 24, 3, 1; ... where column 0 of T^3 forms row 3 of T: [9,3,1,1]. Matrix 4th power T^4 begins: 1; 4, 1; 14, 4, 1; 70, 18, 4, 1; 503, 102, 22, 4, 1; 4898, 763, 138, 26, 4, 1; 60517, 7324, 1083, 178, 30, 4, 1; 899764, 87171, 10454, 1467, 222, 34, 4, 1; ... where column 0 of T^4 forms row 4 of T: [70,14,4,1,1]. Matrix 5th power T^5 begins: 1; 5, 1; 20, 5, 1; 105, 25, 5, 1; 755, 150, 30, 5, 1; 7206, 1140, 200, 35, 5, 1; 86895, 10861, 1610, 255, 40, 5, 1; 1264270, 126940, 15576, 2170, 315, 45, 5, 1; ... where column 0 of T^5 forms row 5 of T: [755,105,20,5,1,1]. Matrix 6th power T^6 begins: 1; 6, 1; 27, 6, 1; 149, 33, 6, 1; 1080, 209, 39, 6, 1; 10166, 1620, 275, 45, 6, 1; 120012, 15401, 2274, 347, 51, 6, 1; 1710097, 177477, 22142, 3048, 425, 57, 6, 1; ... where column 0 of T^6 forms row 6 of T: [10166,1080,149,27,6,1,1]. PROG (PARI) {T(n, k)=local(M, N); if(n==k|n==k+1, 1, if(n==k+2, k+2, N=matrix(n, n, r, c, if(r>=c, T(r-1, c-1))); M=matrix(n+1, n+1, r, c, if(r>=c, if(r<=n, N[r, c], (N^n)[n-k, 1]))); M[n+1, k+1]))} CROSSREFS Cf. A167016, A167017, A167018, A167019; A167142, A167144, A167145. Sequence in context: A157109 A185814 A174553 * A124522 A016540 A132620 Adjacent sequences: A167012 A167013 A167014 * A167016 A167017 A167018 KEYWORD nonn,tabl AUTHOR Paul D. Hanna, Oct 27 2009 EXTENSIONS Edited by Paul D. Hanna, Oct 30 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 22:02 EDT 2024. Contains 372765 sequences. (Running on oeis4.)