The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185814 Exponential Riordan array (e^x,A005043(x)) 1
1, 1, 1, 1, 2, 1, 1, 9, 3, 1, 1, 52, 30, 4, 1, 1, 545, 250, 70, 5, 1, 1, 6966, 3615, 740, 135, 6, 1, 1, 114457, 56301, 13895, 1715, 231, 7, 1, 1, 2199464, 1107148, 255416, 40390, 3416, 364, 8, 1, 1, 49219137, 24542820, 5904444, 856926, 98406, 6132, 540, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
LINKS
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2013.
FORMULA
R(n,k) = (n!/(k-1)!)*Sum_{i=0..(n-k)} 1/i!*(Sum_{j=k..(n-i)} binomial(2*j-k-1,j-1)*(-1)^(n-j-i)*binomial(n-i,j))/(n-i), k>0, R(n,0)=1.
EXAMPLE
[1]
[1,1]
[1,2,1]
[1,9,3,1]
[1,52,30,4,1]
[1,545,250,70,5,1]
[1,6966,3615,740,135,6,1]
[1,114457,56301,13895,1715,231,7,1]
MATHEMATICA
r[n_, 0] := 1; r[n_, k_] := (n!/(k - 1)!)*Sum[(1/i!)*Sum[Binomial[2*j - k - 1, j - 1]*(-1)^(n - j - i)*Binomial[n - i, j], {j, k, n - i}]/(n - i), {i, 0, n - k}]; Table[r[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Jul 14 2017 *)
CROSSREFS
Sequence in context: A332717 A260374 A157109 * A174553 A167015 A124522
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Feb 05 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 01:05 EDT 2024. Contains 372806 sequences. (Running on oeis4.)