login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185814
Exponential Riordan array (e^x,A005043(x))
1
1, 1, 1, 1, 2, 1, 1, 9, 3, 1, 1, 52, 30, 4, 1, 1, 545, 250, 70, 5, 1, 1, 6966, 3615, 740, 135, 6, 1, 1, 114457, 56301, 13895, 1715, 231, 7, 1, 1, 2199464, 1107148, 255416, 40390, 3416, 364, 8, 1, 1, 49219137, 24542820, 5904444, 856926, 98406, 6132, 540, 9, 1
OFFSET
0,5
LINKS
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2013.
FORMULA
R(n,k) = (n!/(k-1)!)*Sum_{i=0..(n-k)} 1/i!*(Sum_{j=k..(n-i)} binomial(2*j-k-1,j-1)*(-1)^(n-j-i)*binomial(n-i,j))/(n-i), k>0, R(n,0)=1.
EXAMPLE
[1]
[1,1]
[1,2,1]
[1,9,3,1]
[1,52,30,4,1]
[1,545,250,70,5,1]
[1,6966,3615,740,135,6,1]
[1,114457,56301,13895,1715,231,7,1]
MATHEMATICA
r[n_, 0] := 1; r[n_, k_] := (n!/(k - 1)!)*Sum[(1/i!)*Sum[Binomial[2*j - k - 1, j - 1]*(-1)^(n - j - i)*Binomial[n - i, j], {j, k, n - i}]/(n - i), {i, 0, n - k}]; Table[r[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Jul 14 2017 *)
CROSSREFS
Sequence in context: A332717 A260374 A157109 * A174553 A167015 A124522
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Feb 05 2011
STATUS
approved