The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185814 Exponential Riordan array (e^x,A005043(x)) 1
 1, 1, 1, 1, 2, 1, 1, 9, 3, 1, 1, 52, 30, 4, 1, 1, 545, 250, 70, 5, 1, 1, 6966, 3615, 740, 135, 6, 1, 1, 114457, 56301, 13895, 1715, 231, 7, 1, 1, 2199464, 1107148, 255416, 40390, 3416, 364, 8, 1, 1, 49219137, 24542820, 5904444, 856926, 98406, 6132, 540, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2013. FORMULA R(n,k) = (n!/(k-1)!)*Sum_{i=0..(n-k)} 1/i!*(Sum_{j=k..(n-i)} binomial(2*j-k-1,j-1)*(-1)^(n-j-i)*binomial(n-i,j))/(n-i), k>0, R(n,0)=1. EXAMPLE [1] [1,1] [1,2,1] [1,9,3,1] [1,52,30,4,1] [1,545,250,70,5,1] [1,6966,3615,740,135,6,1] [1,114457,56301,13895,1715,231,7,1] MATHEMATICA r[n_, 0] := 1; r[n_, k_] := (n!/(k - 1)!)*Sum[(1/i!)*Sum[Binomial[2*j - k - 1, j - 1]*(-1)^(n - j - i)*Binomial[n - i, j], {j, k, n - i}]/(n - i), {i, 0, n - k}]; Table[r[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Jul 14 2017 *) CROSSREFS Sequence in context: A332717 A260374 A157109 * A174553 A167015 A124522 Adjacent sequences: A185811 A185812 A185813 * A185815 A185816 A185817 KEYWORD nonn,tabl AUTHOR Vladimir Kruchinin, Feb 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 01:05 EDT 2024. Contains 372806 sequences. (Running on oeis4.)