login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185815
Exponential Riordan array (log(1/(1-x)), x*A005043(x)).
1
0, 1, 0, 1, 2, 0, 2, 3, 3, 0, 6, 32, 6, 4, 0, 24, 210, 140, 10, 5, 0, 120, 2904, 1170, 400, 15, 6, 0, 720, 41580, 22344, 3990, 910, 21, 7, 0, 5040, 789984, 379680, 98784, 10500, 1792, 28, 8, 0, 40320, 16961616, 8595936
OFFSET
0,5
LINKS
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2013.
FORMULA
R(n,k):= (n!/(k-1))*Sum_{i=1..(n-k)} (1/i)*Sum_{j=k..(n-i)} binomial(2*j-k-1,j-1)*(-1)^(n-j-i)*binomial(n-i,j))/(n-i), k>0, R(0,0)=0, R(n,0)=(n-1)!.
EXAMPLE
Array begins:
0;
1, 0;
1, 2, 0;
2, 3, 3, 0;
6, 32, 6, 4, 0;
24, 210, 140, 10, 5, 0;
120, 2904, 1170, 400, 15, 6, 0;
720, 41580, 22344, 3990, 910, 21, 7, 0;
MAPLE
A185815 := proc(n, k) if n = k then 0; elif k = 0 then (n-1)! ; else n!/(k-1)!*add(1/i/(n-i)*add(binomial(2*j-k-1, j-1)*(-1)^(n-j-i)*binomial(n-i, j), j=k..n-i), i=1..n-k) ; end if; end proc:
seq(seq(A185815(n, k), k=0..n), n=0..15) ; # R. J. Mathar, Feb 09 2011
MATHEMATICA
t[n_, k_] := n!/(k-1)!*Sum[ 1/(i*(n-i))*((-1)^(n+k-i)*(n-i)!*HypergeometricPFQ[ {(k+1)/2, k/2, i+k-n}, {k, k+1}, 4]) / (k!*(n-k-i)!), {i, 1, n-k}]; t[0, 0] = 0; t[n_, 0] := (n-1)!; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 01 2013, after given formula *)
CROSSREFS
Sequence in context: A375201 A171731 A323212 * A332448 A184829 A321132
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Feb 05 2011
STATUS
approved