login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185815 Exponential Riordan array (log(1/(1-x)), x*A005043(x)). 1
0, 1, 0, 1, 2, 0, 2, 3, 3, 0, 6, 32, 6, 4, 0, 24, 210, 140, 10, 5, 0, 120, 2904, 1170, 400, 15, 6, 0, 720, 41580, 22344, 3990, 910, 21, 7, 0, 5040, 789984, 379680, 98784, 10500, 1792, 28, 8, 0, 40320, 16961616, 8595936 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened

Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2013.

FORMULA

R(n,k):= (n!/(k-1))*Sum_{i=1..(n-k)} (1/i)*Sum_{j=k..(n-i)} binomial(2*j-k-1,j-1)*(-1)^(n-j-i)*binomial(n-i,j))/(n-i), k>0, R(0,0)=0, R(n,0)=(n-1)!.

EXAMPLE

Array begins:

    0;

    1,     0;

    1,     2,     0;

    2,     3,     3,    0;

    6,    32,     6,    4,   0;

   24,   210,   140,   10,   5,  0;

  120,  2904,  1170,  400,  15,  6, 0;

  720, 41580, 22344, 3990, 910, 21, 7, 0;

MAPLE

A185815 := proc(n, k) if n = k then 0; elif k = 0 then (n-1)! ; else n!/(k-1)!*add(1/i/(n-i)*add(binomial(2*j-k-1, j-1)*(-1)^(n-j-i)*binomial(n-i, j), j=k..n-i), i=1..n-k) ; end if; end proc:

seq(seq(A185815(n, k), k=0..n), n=0..15) ; # R. J. Mathar, Feb 09 2011

MATHEMATICA

t[n_, k_] := n!/(k-1)!*Sum[ 1/(i*(n-i))*((-1)^(n+k-i)*(n-i)!*HypergeometricPFQ[ {(k+1)/2, k/2, i+k-n}, {k, k+1}, 4]) / (k!*(n-k-i)!), {i, 1, n-k}]; t[0, 0] = 0; t[n_, 0] := (n-1)!; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Mar 01 2013, after given formula *)

CROSSREFS

Sequence in context: A074660 A002125 A171731 * A003987 A141692 A261097

Adjacent sequences:  A185812 A185813 A185814 * A185816 A185817 A185818

KEYWORD

nonn,tabl

AUTHOR

Vladimir Kruchinin, Feb 05 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 22 05:58 EST 2018. Contains 299430 sequences. (Running on oeis4.)