OFFSET
0,5
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2013.
FORMULA
R(n,k):= (n!/(k-1))*Sum_{i=1..(n-k)} (1/i)*Sum_{j=k..(n-i)} binomial(2*j-k-1,j-1)*(-1)^(n-j-i)*binomial(n-i,j))/(n-i), k>0, R(0,0)=0, R(n,0)=(n-1)!.
EXAMPLE
Array begins:
0;
1, 0;
1, 2, 0;
2, 3, 3, 0;
6, 32, 6, 4, 0;
24, 210, 140, 10, 5, 0;
120, 2904, 1170, 400, 15, 6, 0;
720, 41580, 22344, 3990, 910, 21, 7, 0;
MAPLE
A185815 := proc(n, k) if n = k then 0; elif k = 0 then (n-1)! ; else n!/(k-1)!*add(1/i/(n-i)*add(binomial(2*j-k-1, j-1)*(-1)^(n-j-i)*binomial(n-i, j), j=k..n-i), i=1..n-k) ; end if; end proc:
seq(seq(A185815(n, k), k=0..n), n=0..15) ; # R. J. Mathar, Feb 09 2011
MATHEMATICA
t[n_, k_] := n!/(k-1)!*Sum[ 1/(i*(n-i))*((-1)^(n+k-i)*(n-i)!*HypergeometricPFQ[ {(k+1)/2, k/2, i+k-n}, {k, k+1}, 4]) / (k!*(n-k-i)!), {i, 1, n-k}]; t[0, 0] = 0; t[n_, 0] := (n-1)!; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 01 2013, after given formula *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Feb 05 2011
STATUS
approved