The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185815 Exponential Riordan array (log(1/(1-x)), x*A005043(x)). 1
0, 1, 0, 1, 2, 0, 2, 3, 3, 0, 6, 32, 6, 4, 0, 24, 210, 140, 10, 5, 0, 120, 2904, 1170, 400, 15, 6, 0, 720, 41580, 22344, 3990, 910, 21, 7, 0, 5040, 789984, 379680, 98784, 10500, 1792, 28, 8, 0, 40320, 16961616, 8595936 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
LINKS
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2013.
FORMULA
R(n,k):= (n!/(k-1))*Sum_{i=1..(n-k)} (1/i)*Sum_{j=k..(n-i)} binomial(2*j-k-1,j-1)*(-1)^(n-j-i)*binomial(n-i,j))/(n-i), k>0, R(0,0)=0, R(n,0)=(n-1)!.
EXAMPLE
Array begins:
0;
1, 0;
1, 2, 0;
2, 3, 3, 0;
6, 32, 6, 4, 0;
24, 210, 140, 10, 5, 0;
120, 2904, 1170, 400, 15, 6, 0;
720, 41580, 22344, 3990, 910, 21, 7, 0;
MAPLE
A185815 := proc(n, k) if n = k then 0; elif k = 0 then (n-1)! ; else n!/(k-1)!*add(1/i/(n-i)*add(binomial(2*j-k-1, j-1)*(-1)^(n-j-i)*binomial(n-i, j), j=k..n-i), i=1..n-k) ; end if; end proc:
seq(seq(A185815(n, k), k=0..n), n=0..15) ; # R. J. Mathar, Feb 09 2011
MATHEMATICA
t[n_, k_] := n!/(k-1)!*Sum[ 1/(i*(n-i))*((-1)^(n+k-i)*(n-i)!*HypergeometricPFQ[ {(k+1)/2, k/2, i+k-n}, {k, k+1}, 4]) / (k!*(n-k-i)!), {i, 1, n-k}]; t[0, 0] = 0; t[n_, 0] := (n-1)!; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 01 2013, after given formula *)
CROSSREFS
Sequence in context: A002125 A171731 A323212 * A332448 A321132 A003987
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Feb 05 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 04:46 EDT 2024. Contains 372958 sequences. (Running on oeis4.)