login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Exponential Riordan array (e^x,A005043(x))
1

%I #16 Jul 15 2017 02:13:18

%S 1,1,1,1,2,1,1,9,3,1,1,52,30,4,1,1,545,250,70,5,1,1,6966,3615,740,135,

%T 6,1,1,114457,56301,13895,1715,231,7,1,1,2199464,1107148,255416,40390,

%U 3416,364,8,1,1,49219137,24542820,5904444,856926,98406,6132,540,9,1

%N Exponential Riordan array (e^x,A005043(x))

%H G. C. Greubel, <a href="/A185814/b185814.txt">Table of n, a(n) for the first 50 rows, flattened</a>

%H Vladimir Kruchinin, D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties </a>, arXiv:1103.2582 [math.CO], 2013.

%F R(n,k) = (n!/(k-1)!)*Sum_{i=0..(n-k)} 1/i!*(Sum_{j=k..(n-i)} binomial(2*j-k-1,j-1)*(-1)^(n-j-i)*binomial(n-i,j))/(n-i), k>0, R(n,0)=1.

%e [1]

%e [1,1]

%e [1,2,1]

%e [1,9,3,1]

%e [1,52,30,4,1]

%e [1,545,250,70,5,1]

%e [1,6966,3615,740,135,6,1]

%e [1,114457,56301,13895,1715,231,7,1]

%t r[n_, 0] := 1; r[n_, k_] := (n!/(k - 1)!)*Sum[(1/i!)*Sum[Binomial[2*j - k - 1, j - 1]*(-1)^(n - j - i)*Binomial[n - i, j], {j, k, n - i}]/(n - i), {i, 0, n - k}]; Table[r[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _G. C. Greubel_, Jul 14 2017 *)

%K nonn,tabl

%O 0,5

%A _Vladimir Kruchinin_, Feb 05 2011