|
|
A124522
|
|
a(n) = smallest k such that 2nk-1 and 2nk+1 are primes.
|
|
13
|
|
|
2, 1, 1, 9, 3, 1, 3, 12, 1, 3, 9, 3, 12, 15, 1, 6, 3, 2, 6, 6, 1, 15, 3, 4, 3, 6, 2, 48, 6, 1, 21, 3, 3, 15, 6, 1, 27, 3, 4, 3, 15, 5, 12, 15, 2, 9, 3, 2, 9, 6, 1, 3, 60, 1, 6, 24, 2, 3, 9, 2, 129, 12, 7, 9, 15, 5, 12, 27, 1, 3, 9, 3, 42, 45, 1, 90, 3, 2, 66, 21, 5, 63, 27, 16, 6, 6, 2, 12, 24, 1, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
MAPLE
|
isA001359 := proc(n) RETURN( isprime(n) and isprime(n+2)) ; end: A124522 := proc(n) local k; k :=1 ; while true do if isA001359(2*n*k-1) then RETURN(k) ; fi ; k := k+1 ; od ; end: for n from 1 to 60 do printf("%d, ", A124522(n)) ; od ; # R. J. Mathar, Nov 06 2006
|
|
MATHEMATICA
|
f[n_] := Block[{k = 1}, While[Nand @@ PrimeQ[{-1, 1} + 2n*k], k++ ]; k]; Table[f[n], {n, 91}] (* Ray Chandler, Nov 16 2006 *)
|
|
PROG
|
(PARI) {for(n=1, 91, k=1; while(!isprime(2*n*k-1)||!isprime(2*n*k+1), k++); print1(k, ", "))}
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|