login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156883
Square array T(n, k) = Product_{j=1..n} ( Sum_{i=0..j-1} ((k+1)^4 - (k+1)^3)^i ) with T(n, 0) = n!, read by antidiagonals.
6
1, 1, 1, 1, 1, 2, 1, 1, 9, 6, 1, 1, 55, 657, 24, 1, 1, 193, 163405, 384345, 120, 1, 1, 501, 7152001, 26215881175, 1799118945, 720, 1, 1, 1081, 125501001, 50886093754945, 227121050616681925, 67375205371305, 5040, 1, 1, 2059, 1262046961, 15719063251251501, 69513937650491307135745, 106253703835242139200091375, 20185139902805378865, 40320
OFFSET
0,6
FORMULA
T(n, k) = Product_{j=1..n} ( Sum_{i=0..j-1} ((k+1)^4 - (k+1)^3)^i ) with T(n, 0) = n! (square array).
T(n, k) = ( Product_{j=1..n} (k^j*(k+1)^(3*j) -1) )/(k*(k+1)^3 -1)^n with T(n, 0) = n! (square array).
EXAMPLE
Square array begins as:
1, 1, 1, 1, ...;
1, 1, 1, 1, ...;
2, 9, 55, 193, ...;
6, 657, 163405, 7152001, ...;
24, 384345, 26215881175, 50886093754945, ...;
Triangle begins as:
1;
1, 1;
1, 1, 2;
1, 1, 9, 6;
1, 1, 55, 657, 24;
1, 1, 193, 163405, 384345, 120;
1, 1, 501, 7152001, 26215881175, 1799118945, 720;
1, 1, 1081, 125501001, 50886093754945, 227121050616681925, 67375205371305, 5040;
MATHEMATICA
(* First program *)
T[n_, m_] = If[m==0, n!, Product[Sum[(-(m+1)^3 + (m+1)^4)^i, {i, 0, k-1}], {k, n}]];
Table[T[k, n-k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jun 12 2021 *)
(* Second program *)
T[n_, k_]= If[k==0, n!, Product[(k^j*(k+1)^(3*j) -1), {j, n}]/(k*(k+1)^3 -1)^n];
Table[T[k, n-k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 14 2021 *)
PROG
(Sage)
def A156883(n, k): return factorial(n) if (k==0) else product((k^j*(k+1)^(3*j) -1) for j in (1..n))/(k*(k+1)^3 -1)^n
flatten([[A156883(k, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 14 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 17 2009
EXTENSIONS
Edited by G. C. Greubel, Jun 14 2021
STATUS
approved