Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jun 14 2021 10:03:57
%S 1,1,1,1,1,2,1,1,9,6,1,1,55,657,24,1,1,193,163405,384345,120,1,1,501,
%T 7152001,26215881175,1799118945,720,1,1,1081,125501001,50886093754945,
%U 227121050616681925,67375205371305,5040,1,1,2059,1262046961,15719063251251501,69513937650491307135745,106253703835242139200091375,20185139902805378865,40320
%N Square array T(n, k) = Product_{j=1..n} ( Sum_{i=0..j-1} ((k+1)^4 - (k+1)^3)^i ) with T(n, 0) = n!, read by antidiagonals.
%H G. C. Greubel, <a href="/A156883/b156883.txt">Antidiagonal rows n = 0..25, flattened</a>
%F T(n, k) = Product_{j=1..n} ( Sum_{i=0..j-1} ((k+1)^4 - (k+1)^3)^i ) with T(n, 0) = n! (square array).
%F T(n, k) = ( Product_{j=1..n} (k^j*(k+1)^(3*j) -1) )/(k*(k+1)^3 -1)^n with T(n, 0) = n! (square array).
%e Square array begins as:
%e 1, 1, 1, 1, ...;
%e 1, 1, 1, 1, ...;
%e 2, 9, 55, 193, ...;
%e 6, 657, 163405, 7152001, ...;
%e 24, 384345, 26215881175, 50886093754945, ...;
%e Triangle begins as:
%e 1;
%e 1, 1;
%e 1, 1, 2;
%e 1, 1, 9, 6;
%e 1, 1, 55, 657, 24;
%e 1, 1, 193, 163405, 384345, 120;
%e 1, 1, 501, 7152001, 26215881175, 1799118945, 720;
%e 1, 1, 1081, 125501001, 50886093754945, 227121050616681925, 67375205371305, 5040;
%t (* First program *)
%t T[n_, m_] = If[m==0, n!, Product[Sum[(-(m+1)^3 + (m+1)^4)^i, {i,0,k-1}], {k,n}]];
%t Table[T[k,n-k], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jun 12 2021 *)
%t (* Second program *)
%t T[n_, k_]= If[k==0, n!, Product[(k^j*(k+1)^(3*j) -1), {j,n}]/(k*(k+1)^3 -1)^n];
%t Table[T[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jun 14 2021 *)
%o (Sage)
%o def A156883(n, k): return factorial(n) if (k==0) else product((k^j*(k+1)^(3*j) -1) for j in (1..n))/(k*(k+1)^3 -1)^n
%o flatten([[A156883(k,n-k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 14 2021
%Y Cf. A156881, A156882, A156885, A156888, A156889.
%K nonn,tabl
%O 0,6
%A _Roger L. Bagula_, Feb 17 2009
%E Edited by _G. C. Greubel_, Jun 14 2021