login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132620
Triangle T, read by rows, where antidiagonal k of T = antidiagonal k-1 of T^k (after appending '1' for even k) for k>0, with T(n,n)=1 for n>=0.
2
1, 1, 1, 2, 1, 1, 9, 4, 1, 1, 76, 30, 6, 1, 1, 1015, 350, 63, 8, 1, 1, 18996, 5740, 952, 108, 10, 1, 1, 461160, 123536, 19026, 2010, 165, 12, 1, 1, 13810056, 3321624, 477612, 47685, 3652, 234, 14, 1, 1, 492785919, 107639880, 14523179, 1379928, 100529, 6006
OFFSET
0,4
EXAMPLE
Triangle begins:
1;
1, 1;
2, 1, 1;
9, 4, 1, 1;
76, 30, 6, 1, 1;
1015, 350, 63, 8, 1, 1;
18996, 5740, 952, 108, 10, 1, 1;
461160, 123536, 19026, 2010, 165, 12, 1, 1;
13810056, 3321624, 477612, 47685, 3652, 234, 14, 1, 1;
492785919, 107639880, 14523179, 1379928, 100529, 6006, 315, 16, 1, 1; ...
GENERATE T FROM MATRIX POWERS OF T.
Matrix cube, T^3, begins:
1;
3, (1);
(9), 3, 1;
46, 15, 3, 1; ...
where diagonal 3 of T = [9,1] = diagonal 2 of T^3.
Matrix fourth power, T^4, begins:
1;
4, 1;
14, (4), 1;
(76), 22, 4, 1; ...
where diagonal 4 of T = [76,4,1] = diagonal 3 of T^4 append '1'.
Matrix fifth power, T^5, begins:
1,
5, 1,
20, 5, (1),
115, (30), 5, 1,
(1015), 260, 40, 5, 1, ...
where diagonal 5 of T = [1015,30,1] = diagonal 4 of T^5.
Matrix sixth power, T^6, begins:
1;
6, 1;
27, 6, 1;
164, 39, (6), 1;
1476, (350), 51, 6, 1;
(18996), 4350, 608, 63, 6, 1; ...
where diagonal 6 of T = [18996,350,6,1] = diagonal 5 of T^6 append '1'.
PROG
(PARI) T(n, k)=local(M=matrix(n+1, n+1)); for(r=1, n+1, for(c=1, r, M[r, c]=if(r==c || r==c+1, 1, (M^(r+c-2))[r-1, c]))); M[n+1, k+1]
CROSSREFS
Cf. columns: A132621, A132622.
Sequence in context: A167015 A124522 A016540 * A156883 A368924 A019803
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Aug 24 2007
STATUS
approved