|
|
A156886
|
|
a(n) = Sum_{k=0..n} C(n,k)*C(3*n+k,k)
|
|
5
|
|
|
1, 5, 43, 416, 4239, 44485, 475780, 5156548, 56437231, 622361423, 6904185523, 76964141600, 861408728964, 9673849095708, 108954068684616, 1230185577016156, 13920106205444335, 157814104889538739
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n)=[x^n](1+5x+9x^2+7x^3+2x^4)^n. The coefficients (1,5,9,7,2) are the 5th row of A029635.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k = 0..n} (-1)^(n-k)*C(n,k)*C(3*n+k,n)*2^k.
a(n) = Sum_{k = 0..n} C(n,k)*C(3*n,k)*2^(n-k),
12*n*(3*n-1)*(3*n-2)*(238*n^2 - 663*n + 457)*a(n) = 2*(150416*n^5 - 644640*n^4 + 1020351*n^3 - 734334*n^2 + 237007*n - 26880)*a(n-1) - (3*n-3)*(3*n-4)*(3*n-5)*(238*n^2 - 187*n + 32)*a(n-2). (End)
a(n) = P_n(0,2*n,3) where P_n(a,b,x) is the n-th Jacobi polynomial with parameters a and b. - Robert Israel, Feb 11 2018
a(n) ~ sqrt(1/3 + 11/(12*sqrt(7))) * ((316 + 119*sqrt(7))/54)^n / sqrt(Pi*n). - Vaclav Kotesovec, Jan 09 2023
|
|
MAPLE
|
add(binomial(n, k)*binomial(3*n+k, k), k = 0..n);
end proc:
|
|
MATHEMATICA
|
a[n_] := Sum[ Binomial[n, k] Binomial[3n + k, k], {k, 0, n}]; Array[a, 21, 0] (* Robert G. Wilson v, Feb 11 2018 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|