login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = smallest k such that 2nk-1 and 2nk+1 are primes.
13

%I #17 Mar 30 2024 17:30:56

%S 2,1,1,9,3,1,3,12,1,3,9,3,12,15,1,6,3,2,6,6,1,15,3,4,3,6,2,48,6,1,21,

%T 3,3,15,6,1,27,3,4,3,15,5,12,15,2,9,3,2,9,6,1,3,60,1,6,24,2,3,9,2,129,

%U 12,7,9,15,5,12,27,1,3,9,3,42,45,1,90,3,2,66,21,5,63,27,16,6,6,2,12,24,1,6

%N a(n) = smallest k such that 2nk-1 and 2nk+1 are primes.

%H Robert Israel, <a href="/A124522/b124522.txt">Table of n, a(n) for n = 1..10000</a>

%p isA001359 := proc(n) RETURN( isprime(n) and isprime(n+2)) ; end: A124522 := proc(n) local k; k :=1 ; while true do if isA001359(2*n*k-1) then RETURN(k) ; fi ; k := k+1 ; od ; end: for n from 1 to 60 do printf("%d,",A124522(n)) ; od ; # _R. J. Mathar_, Nov 06 2006

%t f[n_] := Block[{k = 1},While[Nand @@ PrimeQ[{-1, 1} + 2n*k], k++ ];k];Table[f[n], {n, 91}] (* _Ray Chandler_, Nov 16 2006 *)

%t skp[n_]:=Module[{k=1},While[AnyTrue[2n k+{1,-1},CompositeQ],k++];k]; Join[{2},Array[skp,100,2]] (* _Harvey P. Dale_, Mar 30 2024 *)

%o (PARI) {for(n=1,91,k=1;while(!isprime(2*n*k-1)||!isprime(2*n*k+1),k++);print1(k, ","))}

%Y Cf. A040040, A045753, A002822, A124065, A124518-A124522, A063983.

%K nonn

%O 1,1

%A _Artur Jasinski_, Nov 04 2006

%E Edited and extended by _Klaus Brockhaus_ and _R. J. Mathar_, Nov 06 2006