|
|
A260374
|
|
The distance between n! and the nearest perfect square.
|
|
2
|
|
|
0, 0, 1, 2, 1, 1, 9, 1, 81, 476, 225, 324, 4604, 74879, 176400, 215296, 3444736, 11551671, 45680444, 255004929, 1158920361, 2657058876, 24923993276, 130518272975, 97216010329, 2430400258225, 1553580508516, 4666092737476, 538347188396016, 2137864362693921
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
Table of n, a(n) for n=0..29.
|
|
FORMULA
|
a(n) = abs(n!-A260373(n)).
|
|
EXAMPLE
|
6!=720. The nearest perfect square is 729. The difference between these is 9, so a(6)=9.
|
|
PROG
|
(PARI) a(n)=abs(n!-round(sqrt(n!))^2) \\ Charles R Greathouse IV, Jul 23 2015
(Python)
from gmpy2 import isqrt
A260374_list, g = [0], 1
for i in range(1, 1001):
....g *= i
....s = isqrt(g)
....t = g-s**2
....A260374_list.append(int(t if t-s <= 0 else 2*s+1-t)) # Chai Wah Wu, Jul 23 2015
|
|
CROSSREFS
|
Cf. A260373, A260375.
Sequence in context: A087127 A144946 A332717 * A157109 A185814 A174553
Adjacent sequences: A260371 A260372 A260373 * A260375 A260376 A260377
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Otis Tweneboah, Pratik Koirala, Eugene Fiorini, Nathan Fox, Jul 23 2015
|
|
STATUS
|
approved
|
|
|
|