login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260375
Numbers k such that A260374(k) is a perfect square.
1
0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 14, 15, 16
OFFSET
1,3
COMMENTS
There are a surprising number of small terms in this sequence.
Heuristic: The square root of x has an average distance of 1/4 to an integer, so |x - round(sqrt(x))^2| is around |x - (sqrt(x) - 1/4)^2| or about sqrt(x)/2, hence A260374(n) is around sqrt(n!)/2. By Stirling's approximation this is around (n/e)^(n/2) which is a square with probability (n/e)^(-n/4). The integral of this function converges, so this sequence should be finite. This heuristic is crude, though, because it does not model the extreme values of A260374. - Charles R Greathouse IV, Jul 23 2015
There are no further terms up to 10^5, so probably the list is complete. - Charles R Greathouse IV, Jul 23 2015
EXAMPLE
6! = 720. The nearest perfect square is 729. The difference is 9, which is itself a perfect square. So, 6 is in this sequence.
PROG
(PARI) is(n)=my(N=n!, s=sqrtint(N)); issquare(min(N-s^2, (s+1)^2-N)) \\ Charles R Greathouse IV, Jul 23 2015
(Python)
from gmpy2 import isqrt, is_square
A260375_list, g = [0], 1
for i in range(1, 1001):
g *= i
s = isqrt(g)
t = g-s**2
if is_square(t if t-s <= 0 else 2*s+1-t):
A260375_list.append(i) # Chai Wah Wu, Jul 23 2015
CROSSREFS
Sequence in context: A086743 A285432 A039079 * A361144 A188160 A047571
KEYWORD
nonn,more
STATUS
approved