login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326047
a(n) = gcd(n-A050449(n), n-A050452(n)), where A050449 and A050452 give the sum of divisors of the form 4k+1 and of the form 4k+3, respectively.
17
1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 10, 1, 1, 1, 3, 1, 1, 1, 18, 2, 1, 1, 22, 1, 1, 2, 1, 3, 1, 12, 30, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 4, 42, 1, 3, 1, 46, 1, 1, 1, 3, 2, 1, 4, 1, 1, 1, 2, 58, 6, 1, 1, 2, 1, 1, 4, 66, 2, 1, 4, 70, 1, 1, 2, 2, 3, 1, 4, 78, 2, 1, 2, 82, 2, 1, 1, 3, 1, 1, 6, 7, 1, 1, 1, 1, 1, 1, 1, 14, 1, 1, 12, 102, 2, 9
OFFSET
1,3
LINKS
FORMULA
a(n) = gcd(A326049(n), A326052(n)) = gcd(n-A050449(n), n-A050452(n)).
a(2n-1) = A326048(2n-1) for all n.
PROG
(PARI)
A050449(n) = sumdiv(n, d, d*((d % 4) == 1)); \\ From A050449
A326049(n) = (n-A050449(n));
A050452(n) = sumdiv(n, d, d*(3==(d % 4)));
A326052(n) = (n-A050452(n));
A326047(n) = gcd(A326049(n), A326052(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 04 2019
STATUS
approved