OFFSET
0,6
FORMULA
T(n,k) = Sum_{j=0..n} Stirling2(n,j) * T(j,k-1), k>1, T(n,0) = (-1)^n * n!.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, -1, -1, ...
2, 1, 0, -1, -2, -3, -4, ...
-6, -1, 1, 0, -4, -11, -21, ...
24, 1, 1, 6, -2, -41, -129, ...
-120, -1, -2, 32, 76, -75, -806, ...
720, 1, -9, 115, 953, 1540, -3334, ...
MAPLE
A:= (n, k)-> n!*(g->coeff(series(1/(1+(g@@k)(x)), x, n+1), x, n))(x->exp(x)-1):
seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Feb 11 2022
MATHEMATICA
T[n_, 0] := (-1)^n*n!; T[n_, k_] := T[n, k] = Sum[StirlingS2[n, j]*T[j, k - 1], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 11 2022 *)
PROG
(PARI) T(n, k) = if(k==0, (-1)^n*n!, sum(j=0, n, stirling(n, j, 2)*T(j, k-1)));
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Feb 11 2022
STATUS
approved