login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351429
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 + f^k(x)), where f(x) = exp(x) - 1.
5
1, 1, -1, 1, -1, 2, 1, -1, 1, -6, 1, -1, 0, -1, 24, 1, -1, -1, 1, 1, -120, 1, -1, -2, 0, 1, -1, 720, 1, -1, -3, -4, 6, -2, 1, -5040, 1, -1, -4, -11, -2, 32, -9, -1, 40320, 1, -1, -5, -21, -41, 76, 115, -9, 1, -362880, 1, -1, -6, -34, -129, -75, 953, 172, 50, -1, 3628800
OFFSET
0,6
FORMULA
T(n,k) = Sum_{j=0..n} Stirling2(n,j) * T(j,k-1), k>1, T(n,0) = (-1)^n * n!.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, -1, -1, ...
2, 1, 0, -1, -2, -3, -4, ...
-6, -1, 1, 0, -4, -11, -21, ...
24, 1, 1, 6, -2, -41, -129, ...
-120, -1, -2, 32, 76, -75, -806, ...
720, 1, -9, 115, 953, 1540, -3334, ...
MAPLE
A:= (n, k)-> n!*(g->coeff(series(1/(1+(g@@k)(x)), x, n+1), x, n))(x->exp(x)-1):
seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Feb 11 2022
MATHEMATICA
T[n_, 0] := (-1)^n*n!; T[n_, k_] := T[n, k] = Sum[StirlingS2[n, j]*T[j, k - 1], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 11 2022 *)
PROG
(PARI) T(n, k) = if(k==0, (-1)^n*n!, sum(j=0, n, stirling(n, j, 2)*T(j, k-1)));
CROSSREFS
Columns k=0..5 give A133942, A033999, A000587, A130410, A351427, A351428.
Main diagonal gives A351433.
Sequence in context: A112734 A351699 A260685 * A273730 A369964 A326047
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Feb 11 2022
STATUS
approved