OFFSET
1,4
COMMENTS
It is easy to prove that a(1)=1, a(p)=-1, a(p^n)=0 if p>2, a(p1*p2*..*pn)=(-1)^n, a(2*p1*...*pn)=-1.
It appears that abs(a(n)) > 1 for multiples of 4. - Michel Marcus, Nov 19 2015
If p1,...,pn are odd it appears that a(p1^k1*p2^k2*...*pn^kn)=0 if one of k1,...,kn > 1. Similarly, it appears that a(2*p1^k1*p2^k2*...*pn^kn)=0 if one of k1,...,kn > 1.
For odd n a(n) is equal to the Möbius function: A008683(n).
For n == 2 mod 4, it seems that a(n) = -|Möbius(n/2)|. For n == 0 mod 4, see A264609.- N. J. A. Sloane, Nov 24 2015
LINKS
Robert Israel, Table of n, a(n) for n = 1..8447
EXAMPLE
For a prime p, a(p)^1 + a(1)^p = 0 => a(p) = -1.
For n=6, a(1)^6 + a(2)^3 + a(3)^2 + a(6)^1 = 0, so 1 - 1 + 1 + a(6) = 0, so 1 + a(6) = 0, so a(6) = -1.
MAPLE
a:= proc(n) option remember;
-add(procname(n/d)^d, d = numtheory:-divisors(n) minus {1});
end proc:
a(1):= 1:
map(a, [$1..100]); # Robert Israel, Nov 19 2015
MATHEMATICA
a[1] = 1; a[n_] := a[n] = -DivisorSum[n, If[# == 1, 0, a[n/#]^#] &]; Array[a, 70] (* Jean-François Alcover, Dec 02 2015, adapted from PARI *)
PROG
(PARI) a(n) = if (n==1, 1, - sumdiv(n, d, if (d==1, 0, a(n/d)^d))); \\ Michel Marcus, Nov 16 2015
CROSSREFS
KEYWORD
sign
AUTHOR
Gevorg Hmayakyan, Nov 15 2015
STATUS
approved