OFFSET
0,4
COMMENTS
Erdős conjectures that a(n) > 0 for n > 8.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, B33. [Does not seem to be in section B33.]
LINKS
Robert Israel, Table of n, a(n) for n = 0..10000
Paul Erdős, Some unconventional problems in number theory, Mathematics Magazine, Vol. 52, No. 2 (1979), pp. 67-70.
FORMULA
EXAMPLE
For n=5, the expansion of 2^n in number base 3 is 1012, thus: a(n)=1
For n=10, the expansion of 2^n in number base 3 is 1101221, thus: a(n)=2
MAPLE
seq(numboccur(2, convert(2^n, base, 3)), n=0..100); # Robert Israel, Nov 15 2015
MATHEMATICA
S={}; n=-1; While[n<150, n++; A=IntegerDigits[2^n, 3]; k=Count[A, 2]; AppendTo[S, k]]; S
PROG
(PARI) c(k, d, b) = {my(c=0, f); while (k>b-1, f=k-b*(k\b); if (f==d, c++); k\=b); if (k==d, c++); return(c)}
for(n=0, 300, print1(c(2^n, 2, 3)", ")) \\ Altug Alkan, Nov 15 2015
(PARI) a(n) = #select(x->(x==2), digits(2^n, 3)); \\ Michel Marcus, Nov 28 2018
(PARI) a(n) = hammingweight(digits(2^n, 3)\2); \\ Ruud H.G. van Tol, May 09 2024
(Perl) use ntheory ":all"; sub a260683 { scalar grep { $_==2 } todigits(vecprod((2) x shift), 3) } # Dana Jacobsen, Aug 16 2016
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Emmanuel Vantieghem, Nov 15 2015
STATUS
approved