login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163819
Expansion of (phi(q) * phi(q^10) - phi(q^2) * phi(q^5)) / 2 in powers of q where phi() is a Ramanujan theta function.
1
1, -1, 0, 1, -1, 0, -2, -1, 1, 1, 2, 0, -2, 2, 0, 1, 0, -1, 2, -1, 0, -2, -2, 0, 1, 2, 0, -2, 0, 0, 0, -1, 0, 0, 2, 1, -2, -2, 0, 1, 2, 0, 0, 2, -1, 2, -2, 0, 3, -1, 0, -2, -2, 0, -2, 2, 0, 0, 2, 0, 0, 0, -2, 1, 2, 0, 0, 0, 0, -2, 0, -1, 0, 2, 0, 2, -4, 0, 0, -1, 1, -2, 0, 0, 0, 0, 0, -2, 2, 1, 4, -2, 0, 2, -2, 0, 0, -3, 2, 1, 0, 0, -2, 2, 0
OFFSET
1,7
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(n) is multiplicative with a(2^e) = a(5^e) = (-1)^e, a(p^e) = (1 + (-1)^e)/2 if p == 3, 17, 21, 27, 29, 31, 33, 39 (mod 40), a(p^e) = e+1 if p == 1, 9, 11, 19 (mod 40), a(p^e) = (-1)^e * (e+1) if p == 7, 13, 23, 37 (mod 40).
|a(n)| = A035180(n).
EXAMPLE
G.f. = q - q^2 + q^4 - q^5 - 2*q^7 - q^8 + q^9 + q^10 + 2*q^11 - 2*q^13 + ...
MATHEMATICA
f[x_, y_] := QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; phi[x_] := f[x, x]; A163819[n_] := SeriesCoefficient[ (phi[q]*phi[q^10] - phi[q^2]*phi[q^5])/2, {q, 0, n}]; Table[A163819[n], {n, 1, 50}] (* G. C. Greubel, Aug 05 2017 *)
PROG
(PARI) {a(n) = if( n<1, 0, (qfrep([1, 0; 0, 10], n)[n] - qfrep([2, 0; 0, 5], n)[n]))};
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, kronecker(-10, d)) * if( n%5, kronecker(5, n), (-1)^(0 != sum(k=0, sqrtint(n \ 50), issquare( n/5 - 10*k^2 )))))};
CROSSREFS
Cf. A035180.
Sequence in context: A143262 A379590 A035180 * A301734 A281185 A260683
KEYWORD
sign,mult
AUTHOR
Michael Somos, Aug 04 2009
STATUS
approved