Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jun 04 2019 16:33:06
%S 1,1,2,1,1,1,6,1,1,2,10,1,1,1,3,1,1,1,18,2,1,1,22,1,1,2,1,3,1,12,30,1,
%T 1,2,1,1,1,1,1,2,1,4,42,1,3,1,46,1,1,1,3,2,1,4,1,1,1,2,58,6,1,1,2,1,1,
%U 4,66,2,1,4,70,1,1,2,2,3,1,4,78,2,1,2,82,2,1,1,3,1,1,6,7,1,1,1,1,1,1,1,14,1,1,12,102,2,9
%N a(n) = gcd(n-A050449(n), n-A050452(n)), where A050449 and A050452 give the sum of divisors of the form 4k+1 and of the form 4k+3, respectively.
%H Antti Karttunen, <a href="/A326047/b326047.txt">Table of n, a(n) for n = 1..65537</a>
%F a(n) = gcd(A326049(n), A326052(n)) = gcd(n-A050449(n), n-A050452(n)).
%F a(2n-1) = A326048(2n-1) for all n.
%o (PARI)
%o A050449(n) = sumdiv(n, d, d*((d % 4) == 1)); \\ From A050449
%o A326049(n) = (n-A050449(n));
%o A050452(n) = sumdiv(n, d, d*(3==(d % 4)));
%o A326052(n) = (n-A050452(n));
%o A326047(n) = gcd(A326049(n), A326052(n));
%Y Cf. A050449, A050452, A326048, A326049, A326052
%K nonn
%O 1,3
%A _Antti Karttunen_, Jun 04 2019