The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157119 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+103)^2 = y^2. 5
 0, 84, 105, 309, 765, 884, 2060, 4712, 5405, 12257, 27713, 31752, 71688, 161772, 185313, 418077, 943125, 1080332, 2436980, 5497184, 6296885, 14204009, 32040185, 36701184, 82787280, 186744132, 213910425, 482519877, 1088424813, 1246761572 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Corresponding values y of solutions (x, y) are in A157120. lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2). lim_{n -> infinity} a(n)/a(n-1) = (11+3*sqrt(2))/(11-3*sqrt(2)) for n mod 3 = {1, 2}. lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))*(11-3*sqrt(2))^2/(11+3*sqrt(2))^2 for n mod 3 = 0. LINKS Index entries for linear recurrences with constant coefficients, signature (1,0,6,-6,0,-1,1). FORMULA a(n) = 6*a(n-3)-a(n-6)+206 for n > 6; a(1) = 0, a(2) = 84, a(3) = 105, a(4) = 309, a(5) = 765, a(6) = 884. G.f.: x*(84+21*x+204*x^2-48*x^3-7*x^4-48*x^5)/((1-x)*(1-6*x^3+x^6)). a(3*k+1) = 103*A001652(k) for k >= 0. PROG (PARI) {forstep(n=0, 1300000000, [1, 3], if(issquare(2*n^2+206*n+10609), print1(n, ", ")))} CROSSREFS Cf. A157120, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A157121 (decimal expansion of 11+3*sqrt(2)), A157122 (decimal expansion of 11-3*sqrt(2)), A157123 (decimal expansion of (11+3*sqrt(2))/(11-3*sqrt(2))). Sequence in context: A113931 A214866 A111313 * A209204 A219801 A316833 Adjacent sequences:  A157116 A157117 A157118 * A157120 A157121 A157122 KEYWORD nonn,easy AUTHOR Klaus Brockhaus, Feb 25 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 1 09:53 EDT 2020. Contains 334762 sequences. (Running on oeis4.)