

A295084


Number of sqrt(n)smooth numbers <= n.


9



1, 1, 1, 3, 3, 3, 3, 4, 7, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 10, 10, 11, 16, 16, 17, 17, 17, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 23, 30, 31, 31, 31, 31, 32, 32, 33, 33, 33, 33, 34, 34, 34, 35, 36, 36, 36, 36, 36, 36, 37, 37, 38, 38, 38, 39, 39, 39, 39, 39, 40
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

a(n) = number of positive integers m<=n such that A006530(m) <= sqrt(n).


LINKS

Table of n, a(n) for n=1..80.
Wikipedia, Smooth number


FORMULA

a(n) = n  A241419(n).
If n is in A063539, then a(n)=a(n1)+1; if n is in A001248, i.e., n=p^2 for prime p, then a(n)=a(n1)+p; otherwise a(n)=a(n1).
a(n) = (1  log(2))*n + O(n/log(n)) as n > infinity.  Robert Israel, Nov 14 2017


MAPLE

N:= 100: # to get a(1)..a(N)
G:= [0, seq(max(numtheory:factorset(n)), n=2..N)]:
seq(nops(select(t > t^2 <= n, G[1..n])), n=1..N); # Robert Israel, Nov 14 2017
a:=[];
for n from 1 to 100 do
c:=0;
for m from 1 to n do
if A006530(m)^2 <= n then c:=c+1; fi; od:
a:=[op(a), c];
od:
a; # (Included because variants of it will apply to related sequences)  N. J. A. Sloane, Apr 10 2020


PROG

(PARI) A295084(n) = my(r=n); forprime(p=sqrtint(n)+1, n, r=n\p); r;


CROSSREFS

Cf. A048098 (indices of records), A063539, A241419.
The following are all different versions of sqrt(n)smooth numbers: A048098, A063539, A064775, A295084, A333535, A333536.
Sequence in context: A006671 A046074 A328914 * A068048 A176994 A264050
Adjacent sequences: A295081 A295082 A295083 * A295085 A295086 A295087


KEYWORD

nonn,look


AUTHOR

Max Alekseyev, Nov 13 2017


STATUS

approved



