login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295086
Expansion of Product_{k>=1} 1/(1 + x^k)^(k*(3*k-1)/2).
4
1, -1, -4, -8, 1, 24, 78, 111, 75, -249, -876, -1847, -2251, -871, 5170, 17052, 34742, 47176, 34576, -44016, -224561, -530104, -875149, -1030871, -475480, 1488315, 5658668, 12109163, 19411024, 22693048, 12926630, -24000623, -102605376, -230257606, -386964449
OFFSET
0,3
COMMENTS
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n*(3*n-1)/2, g(n) = -1.
LINKS
FORMULA
Convolution inverse of A294102.
G.f.: Product_{k>=1} 1/(1 + x^k)^A000326(k).
a(0) = 1 and a(n) = (1/(2*n)) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(3*d-1)*(-1)^(n/d).
PROG
(PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1+x^k)^(k*(3*k-1)/2)))
CROSSREFS
Cf. A294846 (b=3), A284896 (b=4), this sequence (b=5), A295121 (b=6), A295122 (b=7), A295123 (b=8).
Sequence in context: A328250 A340423 A367416 * A331331 A134484 A244641
KEYWORD
sign
AUTHOR
Seiichi Manyama, Nov 15 2017
STATUS
approved