login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331331
Triangle read by rows, T(n, k) (0 <= k <= n) = (-m)^(n-k)*[x^k] KummerU(-n, 1/m, x) for m = 3.
0
1, 1, 1, 4, 8, 1, 28, 84, 21, 1, 280, 1120, 420, 40, 1, 3640, 18200, 9100, 1300, 65, 1, 58240, 349440, 218400, 41600, 3120, 96, 1, 1106560, 7745920, 5809440, 1383200, 138320, 6384, 133, 1, 24344320, 194754560, 170410240, 48688640, 6086080, 374528, 11704, 176, 1
OFFSET
0,4
COMMENTS
Second diagonal is A000567.
FORMULA
E.g.f.: exp(t*x/(1-3*x))/(1-3*x)^(1/3).
EXAMPLE
Taylor series starts:
1 + (t + 1)*x + (t^2 + 8*t + 4)*x^2 + (t^3 + 21*t^2 + 84*t + 28)*x^3 + (t^4 + 40*t^3 + 420*t^2 + 1120*t + 280)*x^4 + O(x^5).
Triangle starts:
[0] 1
[1] 1, 1
[2] 4, 8, 1
[3] 28, 84, 21, 1
[4] 280, 1120, 420, 40, 1
[5] 3640, 18200, 9100, 1300, 65, 1
[6] 58240, 349440, 218400, 41600, 3120, 96, 1
[7] 1106560, 7745920, 5809440, 1383200, 138320, 6384, 133, 1
[8] 24344320, 194754560, 170410240, 48688640, 6086080, 374528, 11704, 176, 1
MAPLE
ser := n -> series(KummerU(-n, 1/3, x), x, n+1):
seq(seq((-3)^(n-k)*coeff(ser(n), x, k), k=0..n), n=0..8);
# Alternative:
gf := exp(t*x/(1-3*x))/(1-3*x)^(1/3): ser := n -> series(gf, x, n+1):
c := n -> coeff(ser(n), x, n): seq(seq(n!*coeff(c(n), t, k), k=0..n), n=0..8);
MATHEMATICA
(* rows[n], n[0..oo] *)
n=12; r={}; For[k=0, k<n+1, k++, AppendTo[r, Binomial[n, n-k]/Product[3*j+1, {j, 0, k-1}]*Product[3*j+1, {j, 0, n-1}]]]; r
(* columns[k], k[0..oo] *)
k=2; c={}; For[n=k, n<13, n++, AppendTo[c, Binomial[n, n-k]/Product[3*j+1, {j, 0, k-1}]*Product[3*j+1, {j, 0, n-1}]]]; c
(* sequence *)
s={}; For[n=0, n<13, n++, For[k=0, k<n+1, k++, AppendTo[s, Binomial[n, n-k]/Product[3*j+1, {j, 0, k-1}]*Product[3*j+1, {j, 0, n-1}]]]]; s
(* Detlef Meya, Jul 31 2023 *)
CROSSREFS
Cf. T(n, 0) = A007559(n), T(n, n-1) = A000567(n) for n >= 1.
Cf. |A021009| (m=1), A176230 (m=2), this sequence (m=3).
Sequence in context: A340423 A367416 A295086 * A134484 A244641 A274192
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jan 18 2020
STATUS
approved