login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331329
a(n) = binomial(5*n, n)*hypergeom([-4*n, -n], [-5*n], -1).
6
1, 9, 145, 2625, 50049, 982729, 19665841, 398796225, 8166636545, 168502295625, 3497529199185, 72949645000065, 1527671538372225, 32100078290806665, 676451066002195825, 14290577765009652865, 302557549412667613185, 6417968867896642617225, 136371773642235542394385
OFFSET
0,2
COMMENTS
Special case of generalized Delannoy numbers (see cross-references):
T(n, k) = binomial(k*n, n)*hypergeom([(1-k)*n, -n], [-k*n], -1).
LINKS
Lin Yang, Yu-Yuan Zhang, and Sheng-Liang Yang, The halves of Delannoy matrix and Chung-Feller properties of the m-Schröder paths, Linear Alg. Appl. (2024).
FORMULA
a(n) ~ sqrt(5 + 21/sqrt(17)) * (349 + 85*sqrt(17))^n / (sqrt(Pi*n) * 2^(5*n + 2)). - Vaclav Kotesovec, Feb 13 2021
MATHEMATICA
a[n_] := Binomial[5 n, n] Hypergeometric2F1[-4 n, -n, -5 n, -1];
Array[a, 19, 0]
CROSSREFS
Cf. A001850 (k=2), A026000 (k=3), A026001 (k=4), this sequence (k=5), A341491 (k=6).
Sequence in context: A173213 A223371 A046529 * A064091 A132060 A362656
KEYWORD
nonn
AUTHOR
Peter Luschny, Jan 31 2020
STATUS
approved