OFFSET
0,3
LINKS
Robert Israel, Table of n, a(n) for n = 0..443
FORMULA
a(n) = Sum_{k=0..n/2} |A021009(n, 2*k+1)|.
a(n) = Sum_{k=0..n} binomial(n, 2*k+1)*n!/(2*k+1)!.
a(n) = n*n!*hypergeom([1/2 - n/2, 1 - n/2], [1, 3/2, 3/2], 1/4).
(n+1)^2*(n+2)^2*a(n) - 4*(n+2)^3*a(n+1) + (6*n^2+30*n+37)*a(n+2) - 4*(n+3)*a(n+3)+a(n+4) = 0. - Robert Israel, Jan 22 2020
Sum_{n>=0} a(n) * x^n / (n!)^2 = (1/2) * exp(x) * (BesselI(0,2*sqrt(x)) - BesselJ(0,2*sqrt(x))). - Ilya Gutkovskiy, Jul 17 2020
a(n) ~ 2^(-3/2) * exp(2*sqrt(n)-n-1/2) * n^(n+1/4) * (1 + 31/(48*sqrt(n))). - Vaclav Kotesovec, Feb 17 2024
MAPLE
gf := sinh(x/(1 - x))/(1 - x): ser := series(gf, x, 22):
seq(n!*coeff(ser, x, n), n=0..20);
# Alternative: seq(add(abs(A021009(n, 2*k+1)), k=0..n/2), n=0..21);
A331326 := proc(n) local S; S := proc(n, k) option remember; `if`(k = 0, 1,
`if`(k > n, 0, S(n-1, k-1)/k + S(n-1, k))) end: n!*add(S(n, 2*k+1), k=0..n) end:
seq(A331326(n), n=0..21);
MATHEMATICA
a[n_] := n n! HypergeometricPFQ[{1/2 - n/2, 1 - n/2}, {1, 3/2, 3/2}, 1/4];
Array[a, 22, 0]
PROG
(PARI) x='x+O('x^22); concat(0, Vec(serlaplace(sinh(x/(1-x))/(1-x))))
(Python)
def A331326():
sa, sb, ta, tb, n = 1, 2, 1, 0, 2
yield 0
yield ta
while(True):
s = 2*n*sb - ((n-1)**2)*sa
t = 2*(n-1)*tb - ((n-1)**2)*ta
sa, sb, ta, tb = sb, s, tb, t
n += 1
yield (s - t)//2
a = A331326(); print([next(a) for _ in range(22)])
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Jan 21 2020
STATUS
approved