login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331328
Evaluation of the Little-Schröder polynomials at 1/2 and normalized with 2^n.
0
1, 3, 21, 171, 1509, 13995, 134277, 1320651, 13237221, 134682219, 1387100229, 14430764043, 151415596197, 1600364733867, 17022016484613, 182055719885643, 1956671540189541, 21121180251536619, 228880429935661509, 2488986535173458571, 27152943714786745893
OFFSET
0,2
FORMULA
a(n) = 2^n*Sum_{k=0..n} A172094(n,k) / 2^k.
a(n) = [x^n] (1 + 6*x - 3*(4*x^2 - 12*x + 1)^(1/2))/(30*x - 2).
a(n) = (60*(n - 3)*a(n-3) + (282 - 184*n)*a(n-2) + (27*n - 18)*a(n-1)) / n.
MAPLE
gf := (1+6*x-3*(4*x^2-12*x+1)^(1/2))/(30*x-2): ser := series(gf, x, 32):
seq(coeff(ser, x, n), n=0..20);
MATHEMATICA
RecurrenceTable[{a[n] == (60 a[n - 3] (n - 3) + (-184 n + 282) a[n - 2] + (27*n - 18) a[n - 1])/n, a[0] == 1, a[1] == 3, a[2] == 21}, a, {n, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Feb 02 2020
STATUS
approved