login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Evaluation of the Little-Schröder polynomials at 1/2 and normalized with 2^n.
0

%I #5 Feb 02 2020 16:55:09

%S 1,3,21,171,1509,13995,134277,1320651,13237221,134682219,1387100229,

%T 14430764043,151415596197,1600364733867,17022016484613,

%U 182055719885643,1956671540189541,21121180251536619,228880429935661509,2488986535173458571,27152943714786745893

%N Evaluation of the Little-Schröder polynomials at 1/2 and normalized with 2^n.

%F a(n) = 2^n*Sum_{k=0..n} A172094(n,k) / 2^k.

%F a(n) = [x^n] (1 + 6*x - 3*(4*x^2 - 12*x + 1)^(1/2))/(30*x - 2).

%F a(n) = (60*(n - 3)*a(n-3) + (282 - 184*n)*a(n-2) + (27*n - 18)*a(n-1)) / n.

%p gf := (1+6*x-3*(4*x^2-12*x+1)^(1/2))/(30*x-2): ser := series(gf, x, 32):

%p seq(coeff(ser, x, n), n=0..20);

%t RecurrenceTable[{a[n] == (60 a[n - 3] (n - 3) + (-184 n + 282) a[n - 2] + (27*n - 18) a[n - 1])/n, a[0] == 1, a[1] == 3, a[2] == 21}, a, {n, 20}]

%Y Cf. A172094, A001003, A330802.

%K nonn

%O 0,2

%A _Peter Luschny_, Feb 02 2020