login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206178
a(n) = Sum_{k=0..n} binomial(n,k)^3 * 2^k.
10
1, 3, 21, 171, 1521, 14283, 138909, 1385163, 14072193, 145039923, 1512191781, 15914734443, 168802010001, 1802247516891, 19350710547021, 208783189719531, 2262263134211073, 24604815145831011, 268499713118585781, 2938736789722114731, 32250788066104022961
OFFSET
0,2
COMMENTS
Ignoring initial term, equals the logarithmic derivative of A206177.
Compare to Franel numbers: A000172(n) = Sum_{k=0..n} binomial(n,k)^3.
Diagonal of rational functions 1/(1 - x*y + y*z + 2*x*z - 3*x*y*z), 1/(1 + y + z + x*y + y*z + 2*x*z + 3*x*y*z), 1/(1 - x + 2*z + x*y - y*z - 2*x*z + 3*x*y*z), 1/(1 - x - y - z + x*y + y*z + x*z - 3*x*y*z), 1/(1 - x + y + 2*z - x*y + 2*y*z - 2*x*z - 3*x*y*z). - Gheorghe Coserea, Jul 03 2018
FORMULA
a(2*3^n) == 3 (mod 9) for n>=0; a(n) == 0 (mod 9) if n/2 > 1 is not a power of 3.
Recurrence: (n+3)^2*(3*n+4)*a(n+3) - 3*(9*n^3+57*n^2+116*n+74)*a(n+2) - 3*(27*n^3+144*n^2+252*n+145)*a(n+1) - 27*(3*n+7)*(n+1)^2*a(n) = 0. - Vaclav Kotesovec, Sep 11 2012
a(n) ~ (1+2^(1/3))^2/(2*2^(1/3)*sqrt(3)*Pi) * (3*2^(2/3)+3*2^(1/3)+3)^n/n. - Vaclav Kotesovec, Sep 19 2012
G.f.: hypergeom([1/3, 2/3],[1],54*x^2/(1-3*x)^3)/(1-3*x). - Mark van Hoeij, May 02 2013
a(n) = hypergeom([-n,-n,-n],[1,1], -2). - Peter Luschny, Sep 23 2014
G.f. y=A(x) satisfies: 0 = x*(3*x + 2)*(27*x^3 + 27*x^2 + 9*x - 1)*y'' + (243*x^4 + 378*x^3 + 189*x^2 + 36*x - 2)*y' + 3*(x + 1)*(27*x^2 + 12*x + 2)*y. - Gheorghe Coserea, Jul 01 2018
EXAMPLE
L.g.f.: L(x) = 3*x + 21*x^2/2 + 171*x^3/3 + 1521*x^4/4 + 14283*x^5/5 +...
Exponentiation equals the g.f. of A206177:
exp(L(x)) = 1 + 3*x + 15*x^2 + 93*x^3 + 657*x^4 + 5067*x^5 + 41579*x^6 +...
MATHEMATICA
Flatten[{1, RecurrenceTable[{(n+3)^2*(3*n+4)*a[n+3]-3*(9*n^3+57*n^2+116*n+74)*a[n+2]-3*(27*n^3+144*n^2+252*n+145)*a[n+1]-27*(3*n+7)*(n+1)^2*a[n]==0, a[1]==3, a[2]==21, a[3]==171}, a, {n, 1, 20}]}] (* Vaclav Kotesovec, Sep 11 2012 *)
Table[HypergeometricPFQ[{-n, -n, -n}, {1, 1}, -2], {n, 0, 20}] (* Jean-François Alcover, Oct 25 2019 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)^3*2^k)}
(Sage)
A206178 = lambda n: hypergeometric([-n, -n, -n], [1, 1], -2)
[Integer(A206178(n).n(100)) for n in (0..20)] # Peter Luschny, Sep 23 2014
CROSSREFS
Related to diagonal of rational functions: A268545-A268555.
Sequence in context: A189475 A331328 A372089 * A233861 A206397 A247480
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2012
EXTENSIONS
Minor edits by Vaclav Kotesovec, Mar 31 2014
STATUS
approved