login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216483
a(n) = Sum_{k=0..n} binomial(n,k)^3 * 4^k.
6
1, 5, 49, 605, 8065, 113525, 1656145, 24774125, 377601025, 5839329125, 91349718769, 1442580779645, 22959923825281, 367847984671445, 5926784048373265, 95960317086368525, 1560335109283897345, 25466972987548413125, 417048643127042376625, 6850021673230814868125
OFFSET
0,2
COMMENTS
Diagonal of rational function 1/(1 + y + z + x*y + y*z + 4*x*z + 5*x*y*z). - Gheorghe Coserea, Jul 01 2018
Diagonal of rational function 1 / ((1-x)*(1-y)*(1-z) - 4*x*y*z). - Seiichi Manyama, Jul 11 2020
FORMULA
Recurrence: (n+3)^2*(3*n+4)*a(n+3) = 5*(9*n^3+57*n^2+116*n+74)*a(n+2) + (99*n^3+528*n^2+938*n+555)*a(n+1) + 125*(3*n+7)*(n+1)^2*a(n).
a(n) ~ (1+2^(2/3))^2/(2*2^(2/3)*sqrt(3)*Pi) * (3*4^(2/3)+3*4^(1/3)+5)^n/n. - Vaclav Kotesovec, Sep 19 2012
G.f.: hypergeom([1/3, 2/3],[1],108*x^2/(1-5*x)^3)/(1-5*x). - Mark van Hoeij, May 02 2013
a(n) = hypergeom([-n,-n,-n],[1,1],-4). - Peter Luschny, Sep 23 2014
G.f. y=A(x) satisfies: 0 = x*(5*x + 2)*(125*x^3 + 33*x^2 + 15*x - 1)*y'' + (1875*x^4 + 1330*x^3 + 273*x^2 + 60*x - 2)*y' + (625*x^3 + 495*x^2 + 42*x + 10)*y. - Gheorghe Coserea, Jul 01 2018
MATHEMATICA
Table[Sum[Binomial[n, k]^3*4^k, {k, 0, n}], {n, 0, 20}]
PROG
(Sage)
A216483 = lambda n: hypergeometric([-n, -n, -n], [1, 1], -4)
[Integer(A216483(n).n(100)) for n in (0..19)] # Peter Luschny, Sep 23 2014
(PARI) a(n) = sum(k=0, n, binomial(n, k)^3 * 4^k); \\ Gheorghe Coserea, Jul 01 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 11 2012
EXTENSIONS
Minor edits by Vaclav Kotesovec, Mar 31 2014
STATUS
approved