login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243945
a(n) = Sum_{k=0..n} C(2*k, k)^2 * C(n+k, n-k).
7
1, 5, 49, 605, 8281, 120125, 1809025, 27966125, 440790025, 7051890125, 114160867129, 1865975723045, 30743797894681, 509948702030045, 8507207970913729, 142626515754330125, 2401552098016698025, 40591712338241826125, 688413807606268692025, 11710401759994742685125
OFFSET
0,2
COMMENTS
The g.f.s formed from a(2*n)^(1/2) and (a(2*n+1)/5)^(1/2) are:
A243946: sqrt( (1+x + sqrt(1-18*x+x^2)) / (2*(1-18*x+x^2)) );
A243947: sqrt( (1+x - sqrt(1-18*x+x^2)) / (10*x*(1-18*x+x^2)) ).
Lim_{n->infinity} a(n+1)/a(n) = 9 + 4*sqrt(5).
Diagonal of rational function 1/(1 - (x + y + x*z + y*z + x*y*z)). - Gheorghe Coserea, Aug 24 2018
LINKS
A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
FORMULA
G.f.: Sum_{n>=0} binomial(2*n, n)^2 * x^n / (1-x)^(2*n+1).
G.f.: 1 / AGM(1-x, sqrt(1-18*x+x^2)), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.
a(2*n) = A243946(n)^2.
a(2*n+1) = 5 * A243947(n)^2.
Recurrence: n^2*(2*n-3)*a(n) = (2*n-1)*(19*n^2 - 38*n + 14)*a(n-1) - (2*n-3)*(19*n^2 - 38*n + 14)*a(n-2) + (n-2)^2*(2*n-1)*a(n-3). - Vaclav Kotesovec, Aug 18 2014
a(n) ~ (2+sqrt(5)) * (9+4*sqrt(5))^n / (4*Pi*n). - Vaclav Kotesovec, Aug 18 2014. Equivalently, a(n) ~ phi^(6*n + 3) / (4*Pi*n), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
a(n) = hypergeom([1/2, -n, n + 1], [1, 1], -4). - Peter Luschny, Mar 14 2018
G.f. y=A(x) satisfies: 0 = x*(x^2 - 1)*(x^2 - 18*x + 1)*y'' + (3*x^4 - 34*x^3 - 38*x^2 + 38*x - 1)*y' + (x^3 - 3*x^2 - 19*x + 5)*y. - Gheorghe Coserea, Aug 29 2018
From Peter Bala, Feb 07 2022: (Start)
a(n) = P(n,sqrt(5))^2, where P(n,x) denotes the n-th Legendre polynomial.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) hold for all primes p and positive integers n and k. (End)
EXAMPLE
G.f.: A(x) = 1 + 5*x + 49*x^2 + 605*x^3 + 8281*x^4 + 120125*x^5 + ... where
A(x) = 1/(1-x) + 2^2*x/(1-x)^3 + 6^2*x^2/(1-x)^5 + 20^2*x^3/(1-x)^7 + 70^2*x^4/(1-x)^9 + 252^2*x^5/(1-x)^11 + 924^2*x^6/(1-x)^13 + ... + A000984(n)^2*x^n/(1-x)^(2*n+1) + ...
MATHEMATICA
Table[Sum[Binomial[2*k, k]^2 * Binomial[n + k, n - k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 18 2014 *)
a[n_] := HypergeometricPFQ[{1/2, -n, n + 1}, {1, 1}, -4];
Table[a[n], {n, 0, 19}] (* Peter Luschny, Mar 14 2018 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(2*k, k)^2*binomial(n+k, n-k))}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=local(A=1); A=sum(m=0, n, binomial(2*m, m)^2 * x^m/(1-x +x*O(x^n))^(2*m+1)); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=polcoeff( 1 / agm(1-x, sqrt((1-x)^2 - 16*x +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
(Magma) &cat[ [&+[ Binomial(2*k, k)^2 * Binomial(n+k, n-k): k in [0..n]]]: n in [0..30]]; // Vincenzo Librandi, Aug 25 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 17 2014
STATUS
approved