login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243943
a(n) = A006442(n)^2.
5
1, 25, 1369, 93025, 6974881, 553425625, 45558768025, 3848757330625, 331434586569025, 28966516730025625, 2561512789823546329, 228690489716580520225, 20579914168308199841761, 1864413002713001259355225, 169871744046114667846619929, 15554069096581207471331850625
OFFSET
0,2
COMMENTS
In general, we have the binomial identity:
if b(n) = Sum_{k=0..n} t^k * C(2*k, k) * C(n+k, n-k),
then b(n)^2 = Sum_{k=0..n} (t^2+t)^k * C(2*k, k)^2 * C(n+k, n-k),
where the g.f. of b(n) is 1/sqrt(1 - (4*t+2)*x + x^2),
and the g.f. of b(n)^2 is 1 / AGM(1-x, sqrt((1+x)^2 - (4*t+2)^2*x)), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.
Note that the g.f. of A006442 is 1/sqrt(1 - 10*x + x^2).
Limit_{n -> oo} a(n+1)/a(n) = (5 + 2*sqrt(6))^2 = 49 + 20*sqrt(6).
LINKS
FORMULA
G.f.: 1 / AGM(1-x, sqrt(1-98*x+x^2)). - Paul D. Hanna, Aug 30 2014
a(n) = Sum_{k=0..n} 6^k * C(2*k, k)^2 * C(n+k, n-k).
a(n)^(1/2) = Sum_{k=0..n} 2^k * C(2*k, k) * C(n+k, n-k).
a(n) ~ (5+2*sqrt(6))^(2*n+1) / (4*Pi*sqrt(6)*n). - Vaclav Kotesovec, Sep 28 2019
EXAMPLE
G.f.: A(x) = 1 + 9*x + 169*x^2 + 3969*x^3 + 103041*x^4 + 2832489*x^5 +...
MATHEMATICA
Table[Sum[6^k * Binomial[2*k, k]^2 * Binomial[n+k, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 28 2019 *)
LegendreP[Range[0, 40], 5]^2 (* G. C. Greubel, May 17 2023 *)
PROG
(PARI) {a(n) = sum(k=0, n, 6^k * binomial(2*k, k)^2 * binomial(n+k, n-k) )}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = sum(k=0, n, 2^k * binomial(2*k, k) * binomial(n+k, n-k) )^2}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* Using AGM: */
{a(n)=polcoeff( 1 / agm(1-x, sqrt((1+x)^2 - 10^2*x +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 30 2014
(Magma) [Evaluate(LegendrePolynomial(n), 5)^2 : n in [0..40]]; // G. C. Greubel, May 17 2023
(SageMath) [gen_legendre_P(n, 0, 5)^2 for n in range(41)] # G. C. Greubel, May 17 2023
CROSSREFS
Sequences of the form LegendreP(n, 2*m+1)^2: A000012 (m=0), A243949 (m=1), this sequence (m=2), A243944 (m=3), A243007 (m=4).
Cf. A006442.
Sequence in context: A104593 A046910 A278851 * A192107 A206465 A364244
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 17 2014
STATUS
approved