login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243007
a(n) = A084769(n)^2.
5
1, 81, 14641, 3272481, 806616801, 210358905201, 56912554609681, 15800522430616641, 4471485120646226881, 1284238494711502355601, 373195323236525968732401, 109489964937514282794301281, 32378265673661271315300820641, 9639042117142706280223219663281
OFFSET
0,2
COMMENTS
In general, we have the binomial identity:
if b(n) = Sum_{k=0..n} t^k * C(2*k, k) * C(n+k, n-k),
then b(n)^2 = Sum_{k=0..n} (t^2+t)^k * C(2*k, k)^2 * C(n+k, n-k),
where the g.f. of b(n) is 1/sqrt(1 - (4*t+2)*x + x^2),
and the g.f. of b(n)^2 is 1 / AGM(1-x, sqrt((1+x)^2 - (4*t+2)^2*x)), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.
Note that the g.f. of A084769 is 1/sqrt(1 - 18*x + x^2).
Limit_{n -> oo} a(n+1)/a(n) = (9 + 4*sqrt(5))^2 = 161 + 72*sqrt(5).
LINKS
FORMULA
G.f.: 1 / AGM(1-x, sqrt(1- 322*x + x^2)). - Paul D. Hanna, Aug 30 2014
a(n) = Sum_{k=0..n} 20^k * C(2*k, k)^2 * C(n+k, n-k).
a(n)^(1/2) = Sum_{k=0..n} 4^k * C(2*k, k) * C(n+k, n-k).
a(n) ~ (2 + sqrt(5))^(4*n+2) / (8*sqrt(5)*Pi*n). - Vaclav Kotesovec, Sep 28 2019
EXAMPLE
G.f.: A(x) = 1 + 81*x + 14641*x^2 + 3272481*x^3 + 806616801*x^4 +...
MATHEMATICA
Table[SeriesCoefficient[1/Sqrt[1 -18x +x^2], {x, 0, n}], {n, 0, 20}]^2 (* Vincenzo Librandi, Feb 14 2018 *)
LegendreP[Range[0, 30], 9]^2 (* G. C. Greubel, May 17 2023 *)
PROG
(PARI) {a(n) = sum(k=0, n, 20^k * binomial(2*k, k)^2 * binomial(n+k, n-k) )}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = sum(k=0, n, 4^k * binomial(2*k, k) * binomial(n+k, n-k) )^2}
for(n=0, 20, print1(a(n), ", "))
{a(n)=polcoeff( 1 / agm(1-x, sqrt((1+x)^2 - 18^2*x +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 30 2014
(Magma) [Evaluate(LegendrePolynomial(n), 9)^2 : n in [0..30]]; // G. C. Greubel, May 17 2023
(SageMath) [gen_legendre_P(n, 0, 9)^2 for n in range(41)] # G. C. Greubel, May 17 2023
CROSSREFS
Sequences of the form LegendreP(n, 2*m+1)^2: A000012 (m=0), A243949 (m=1), A243943 (m=2), A243944 (m=3), this sequence (m=4).
Cf. A084769.
Sequence in context: A143005 A187432 A017104 * A143653 A222621 A116007
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 18 2014
STATUS
approved