login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243944
a(n) = A084768(n)^2.
5
1, 49, 5329, 717409, 106523041, 16735820689, 2727812288881, 456250924320961, 77788137919752001, 13459803510972477169, 2356471368269511061009, 416518496068852312607521, 74207592486779379593752801, 13309569813247406938272432721, 2400816685486139045360488325809
OFFSET
0,2
COMMENTS
In general, we have the binomial identity:
if b(n) = Sum_{k=0..n} t^k * C(2*k, k) * C(n+k, n-k),
then b(n)^2 = Sum_{k=0..n} (t*(t+1))^k * C(2*k, k)^2 * C(n+k, n-k),
where the g.f. of b(n) is 1/sqrt(1 - (4*t+2)*x + x^2),
and the g.f. of b(n)^2 is 1 / AGM(1-x, sqrt((1+x)^2 - (4*t+2)^2*x)), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.
Note that the g.f. of A084768 is 1/sqrt(1 - 14*x + x^2).
Limit a(n+1)/a(n) = (7 + 4*sqrt(3))^2 = 97 + 56*sqrt(3).
LINKS
FORMULA
G.f.: 1 / AGM(1-x, sqrt(1-194*x+x^2)). - Paul D. Hanna, Aug 30 2014
a(n) = Sum_{k=0..n} 12^k * C(2*k, k)^2 * C(n+k, n-k).
a(n)^(1/2) = Sum_{k=0..n} 3^k * C(2*k, k) * C(n+k, n-k).
a(n) ~ (1+sqrt(3))^(8*n+4) / (sqrt(3) * Pi * n * 2^(4*n+5)). - Vaclav Kotesovec, Sep 28 2019
a(n) = (LegendreP(n, 7))^2. - G. C. Greubel, May 17 2023
EXAMPLE
G.f.: A(x) = 1 + 49*x + 5329*x^2 + 717409*x^3 + 106523041*x^4 +...
MATHEMATICA
Table[Sum[12^k * Binomial[2*k, k]^2 * Binomial[n+k, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 28 2019 *)
CoefficientList[Series[2*EllipticK[1 - (1-x)^2/(1 - 194*x + x^2)] / (Pi*Sqrt[1 - 194*x + x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 28 2019 *)
LegendreP[Range[0, 40], 7]^2 (* G. C. Greubel, May 17 2023 *)
PROG
(PARI) {a(n) = sum(k=0, n, 12^k * binomial(2*k, k)^2 * binomial(n+k, n-k) )}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = sum(k=0, n, 3^k * binomial(2*k, k) * binomial(n+k, n-k) )^2}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* Using AGM: */
{a(n)=polcoeff( 1 / agm(1-x, sqrt((1+x)^2 - 14^2*x +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 30 2014
(Magma) [Evaluate(LegendrePolynomial(n), 7)^2 : n in [0..40]]; // G. C. Greubel, May 17 2023
(SageMath) [gen_legendre_P(n, 0, 7)^2 for n in range(41)] # G. C. Greubel, May 17 2023
CROSSREFS
Sequences of the form LegendreP(n, 2*m+1)^2: A000012 (m=0), A243949 (m=1), A243943 (m=2), this sequence (m=3), A243007 (m=4).
Cf. A084768.
Sequence in context: A283229 A109344 A129207 * A144928 A053772 A075416
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 18 2014
STATUS
approved