login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129207
Second sequence in solution to congruent number 5 problem.
4
1, 1, -49, -4799, 4728001, 18618840001, -767067390499249, -54213419267800732799, 250137278774864229623059201, -1127677799839642474480271473583999, -195577262542844878506138849501555847171249
OFFSET
0,3
COMMENTS
Let W(n)=A129206(n), X(n)=A129207(n), Y(n)=A129208(n), Z(n)=A129209(n).
These four sequences correspond to the four Jacobi theta functions or Weierstrass sigma functions.
REFERENCES
J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, 1939. See p. 427.
LINKS
FORMULA
Right triangle with sides |10*Y(n)*W(n) / (X(n)*Z(n))|, |X(n)*Z(n) / (Y(n)*W(n))|, |2*Y(2*n) / W(2*n)| has area 5.
X(2*n) = X(n)^4 - 50 * W(n)^4.
a(n+2) * a(n-2) = 144 * a(n+1) * a(n-1) + 2257 * a(n)^2. a(-n) = a(n).
PROG
(PARI) {a(n) = n=abs(n); if( n<1, 1, if( n<4, [1, -49, -4799][n], (144 * a(n-1) * a(n-3) + 2257 * a(n-2)^2 ) / a(n-4) ))};
CROSSREFS
Sequence in context: A218317 A283229 A109344 * A243944 A144928 A053772
KEYWORD
sign
AUTHOR
Michael Somos, Apr 03 2007
STATUS
approved