login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129206
First sequence in solution to congruent number 5 problem.
4
0, 1, -12, -2257, 1494696, 8914433905, -178761481355556, -62419747600438859233, -5354229862821602092291248, 1001926359199672697329083442936609, 50016678000996026579336936742637753055940
OFFSET
0,3
COMMENTS
Let W(n)=A129206(n), X(n)=A129207(n), Y(n)=A129208(n), Z(n)=A129209(n).
These four sequences correspond to the four Jacobi theta functions or Weierstrass sigma functions.
REFERENCES
J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, 1939. See p. 427.
FORMULA
Right triangle with sides |10*Y(n)*W(n) / (X(n)*Z(n))|, |X(n)*Z(n) / (Y(n)*W(n))|, |2*Y(2*n) / W(2*n)| has area 5.
W(2*n) = (-1)^n * 2 * W(n) * X(n) * Y(n) * Z(n) for all n in Z.
a(n+2) * a(n-2) = 144 * a(n+1) * a(n-1) + 2257 * a(n)^2, a(n) = -a(-n) for all n in Z.
PROG
(PARI) {a(n) = my(s=sign(n)); n=abs(n); if( n<1, 0, s * if( n<5, [1, -12, -2257, 1494696][n], (144 * a(n-1) * a(n-3) + 2257 * a(n-2)^2 ) / a(n-4) ))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Apr 03 2007
STATUS
approved