login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129209
Fourth sequence in solution to congruent number 5 problem.
4
1, 3, 31, 5283, -113279, 21166249443, -518493692732129, 189797666150873887683, -249563579992463717493803519, 2960896329211804542556804051252803, -115038188620995226180802686473825513089249
OFFSET
0,2
COMMENTS
Let W(n)=A129206(n), X(n)=A129207(n), Y(n)=A129208(n), Z(n)=A129209(n).
These four sequences correspond to the four Jacobi theta functions or Weierstrass sigma functions.
REFERENCES
J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, 1939. See p. 427.
LINKS
FORMULA
Right triangle with sides |10*Y(n)*W(n) / (X(n)*Z(n))|, |X(n)*Z(n) / (Y(n)*W(n))|, |2*Y(2*n) / W(2*n)| has area 5.
Z(2*n) = Z(n)^4 -50* W(n)^4.
a(n+2) * a(n-2) = -144*a(n+1) * a(n-1) +2257 * a(n)^2. a(-n) = a(n).
PROG
(PARI) {a(n) = n=abs(n); if( n<1, 1, if(n<4, [3, 31, 5283][n], (-144 * a(n-1) * a(n-3) + 2257* a(n-2)^2 ) / a(n-4) ))};
CROSSREFS
Sequence in context: A201604 A048562 A022499 * A134721 A002707 A283247
KEYWORD
sign
AUTHOR
Michael Somos, Apr 03 2007, Apr 17 2007
STATUS
approved