Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 May 28 2018 11:37:02
%S 1,1,-49,-4799,4728001,18618840001,-767067390499249,
%T -54213419267800732799,250137278774864229623059201,
%U -1127677799839642474480271473583999,-195577262542844878506138849501555847171249
%N Second sequence in solution to congruent number 5 problem.
%C Let W(n)=A129206(n), X(n)=A129207(n), Y(n)=A129208(n), Z(n)=A129209(n).
%C These four sequences correspond to the four Jacobi theta functions or Weierstrass sigma functions.
%D J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, 1939. See p. 427.
%H Seiichi Manyama, <a href="/A129207/b129207.txt">Table of n, a(n) for n = 0..49</a>
%F Right triangle with sides |10*Y(n)*W(n) / (X(n)*Z(n))|, |X(n)*Z(n) / (Y(n)*W(n))|, |2*Y(2*n) / W(2*n)| has area 5.
%F X(2*n) = X(n)^4 - 50 * W(n)^4.
%F a(n+2) * a(n-2) = 144 * a(n+1) * a(n-1) + 2257 * a(n)^2. a(-n) = a(n).
%o (PARI) {a(n) = n=abs(n); if( n<1, 1, if( n<4, [1, -49, -4799][n], (144 * a(n-1) * a(n-3) + 2257 * a(n-2)^2 ) / a(n-4) ))};
%K sign
%O 0,3
%A _Michael Somos_, Apr 03 2007