Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 May 20 2023 15:20:47
%S 1,49,5329,717409,106523041,16735820689,2727812288881,456250924320961,
%T 77788137919752001,13459803510972477169,2356471368269511061009,
%U 416518496068852312607521,74207592486779379593752801,13309569813247406938272432721,2400816685486139045360488325809
%N a(n) = A084768(n)^2.
%C In general, we have the binomial identity:
%C if b(n) = Sum_{k=0..n} t^k * C(2*k, k) * C(n+k, n-k),
%C then b(n)^2 = Sum_{k=0..n} (t*(t+1))^k * C(2*k, k)^2 * C(n+k, n-k),
%C where the g.f. of b(n) is 1/sqrt(1 - (4*t+2)*x + x^2),
%C and the g.f. of b(n)^2 is 1 / AGM(1-x, sqrt((1+x)^2 - (4*t+2)^2*x)), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.
%C Note that the g.f. of A084768 is 1/sqrt(1 - 14*x + x^2).
%C Limit a(n+1)/a(n) = (7 + 4*sqrt(3))^2 = 97 + 56*sqrt(3).
%H Seiichi Manyama, <a href="/A243944/b243944.txt">Table of n, a(n) for n = 0..438</a>
%F G.f.: 1 / AGM(1-x, sqrt(1-194*x+x^2)). - _Paul D. Hanna_, Aug 30 2014
%F a(n) = Sum_{k=0..n} 12^k * C(2*k, k)^2 * C(n+k, n-k).
%F a(n)^(1/2) = Sum_{k=0..n} 3^k * C(2*k, k) * C(n+k, n-k).
%F a(n) ~ (1+sqrt(3))^(8*n+4) / (sqrt(3) * Pi * n * 2^(4*n+5)). - _Vaclav Kotesovec_, Sep 28 2019
%F a(n) = (LegendreP(n, 7))^2. - _G. C. Greubel_, May 17 2023
%e G.f.: A(x) = 1 + 49*x + 5329*x^2 + 717409*x^3 + 106523041*x^4 +...
%t Table[Sum[12^k * Binomial[2*k, k]^2 * Binomial[n+k, n-k], {k,0,n}], {n,0,20}] (* _Vaclav Kotesovec_, Sep 28 2019 *)
%t CoefficientList[Series[2*EllipticK[1 - (1-x)^2/(1 - 194*x + x^2)] / (Pi*Sqrt[1 - 194*x + x^2]), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Sep 28 2019 *)
%t LegendreP[Range[0, 40], 7]^2 (* _G. C. Greubel_, May 17 2023 *)
%o (PARI) {a(n) = sum(k=0, n, 12^k * binomial(2*k, k)^2 * binomial(n+k, n-k) )}
%o for(n=0, 20, print1(a(n), ", "))
%o (PARI) {a(n) = sum(k=0, n, 3^k * binomial(2*k, k) * binomial(n+k, n-k) )^2}
%o for(n=0, 20, print1(a(n), ", "))
%o (PARI) /* Using AGM: */
%o {a(n)=polcoeff( 1 / agm(1-x, sqrt((1+x)^2 - 14^2*x +x*O(x^n))), n)}
%o for(n=0, 20, print1(a(n), ", ")) \\ _Paul D. Hanna_, Aug 30 2014
%o (Magma) [Evaluate(LegendrePolynomial(n),7)^2 : n in [0..40]]; // _G. C. Greubel_, May 17 2023
%o (SageMath) [gen_legendre_P(n,0,7)^2 for n in range(41)] # _G. C. Greubel_, May 17 2023
%Y Sequences of the form LegendreP(n, 2*m+1)^2: A000012 (m=0), A243949 (m=1), A243943 (m=2), this sequence (m=3), A243007 (m=4).
%Y Cf. A084768.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Aug 18 2014