login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243947
Expansion of g.f. sqrt( (1+x - sqrt(1-18*x+x^2)) / (10*x*(1-18*x+x^2)) ).
8
1, 11, 155, 2365, 37555, 610897, 10098997, 168894355, 2849270515, 48395044705, 826479148001, 14177519463191, 244109912494525, 4216385987238575, 73024851218517275, 1267712063327871245, 22052786911315216595, 384321597582115655825, 6708530714274563938225
OFFSET
0,2
COMMENTS
Multiply the square of each term by 5 to form a bisection of A243945.
Limit_{n->oo} a(n+1)/a(n) = 9 + 4*sqrt(5).
LINKS
FORMULA
a(n)^2 = (1/5) * Sum_{k=0..2*n+1} C(2*k, k)^2 * C(2*n+k+1, 2*n-k+1).
a(n) ~ (9+4*sqrt(5))^(n+1) / (2*5^(1/4)*sqrt(2*Pi*n) * sqrt(5+2*sqrt(5))). - Vaclav Kotesovec, Aug 18 2014. Equivalently, a(n) ~ phi^(6*n + 9/2) / (2^(3/2) * sqrt(5*Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
From Peter Bala, Mar 15 2018: (Start)
a(n) = (1/sqrt(5))*P(2*n+1,sqrt(5)), where P(n,x) denotes the n-th Legendre polynomial. See A008316.
a(n) = Sum_{k = 0..n} (1/2)*C(2*k+1,k)*C(n,k)*C(2*n+2*k+2,2*n+1)/C(n+k+1,n). In general, (1/sqrt(1 + 4*x))*P(2*n+1,sqrt(1+4*x)) = (1/(2*C(2*n+1,n))) * Sum_{k = 0..n} C(n,k)*C(n+k+1,k)*C(2*n+2*k+2,n+k+1)*x^k.
a(n) = (1/sqrt(5))*Sum_{k = 0..2*n+1} C(2*n+1,k)^2 * phi^(2*n-2*k+1), where phi = (sqrt(5) + 1)/2.
a(n) = (1/sqrt(5))*Sum_{k = 0..2*n+1} C(2*n+1,k)*C(2*n+1+k,k) * Phi^k, where Phi = (sqrt(5) - 1)/2. (End)
a(n) = hypergeom([-n, n + 3/2], [1], -4). - Peter Luschny, Mar 16 2018
From Peter Bala, Mar 17 2018: (Start)
a(n) = Sum_{k = 0..n} C(2*n+1,2*k)*C(2*k,k)*5^(n-k).
D-finite with recurrence: n*(4*n-3)*(2*n+1)*a(n) = (4*n-1)*(36*n^2-18*n-7)*a(n-1) - (n-1)*(2*n-1)*(4*n+1)*a(n-2). (End)
EXAMPLE
G.f.: A(x) = 1 + 11*x + 155*x^2 + 2365*x^3 + 37555*x^4 + 610897*x^5 + ...
where
A(x)^2 = (1+x - sqrt(1-18*x+x^2)) / (10*x*(1-18*x+x^2)).
MAPLE
seq(add(1/2*binomial(2*k+1, k)*binomial(n, k)*binomial(2*n+2*k+2, 2*n+1)/binomial(n+k+1, n), k = 0..n), n = 0..20); # Peter Bala, Mar 15 2018
MATHEMATICA
CoefficientList[Series[Sqrt[((1+x-Sqrt[1-18x+x^2]))/(10x(1-18x+x^2))], {x, 0, 20}], x] (* Harvey P. Dale, Jul 31 2016 *)
a[n_] := Hypergeometric2F1[-n, n + 3/2, 1, -4];
Table[a[n], {n, 0, 18}] (* Peter Luschny, Mar 16 2018 *)
PROG
(PARI) /* From definition: */
{a(n)=polcoeff( sqrt( (1+x - sqrt(1-18*x+x^2 +x^2*O(x^n))) / (10*x*(1-18*x+x^2 +x*O(x^n))) ), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* From a(n) = sqrt( A243945(2*n+1)/5 ): */
{a(n)=sqrtint( (1/5)*sum(k=0, 2*n+1, binomial(2*k, k)^2*binomial(2*n+k+1, 2*n-k+1)) )}
for(n=0, 20, print1(a(n), ", "))
(Python)
from math import comb
def A243947(n): return sum(5**(n-k)*comb(m:=k<<1, k)*comb((n<<1)+1, m) for k in range(n+1)) # Chai Wah Wu, Mar 23 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Aug 17 2014
STATUS
approved