The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A243947 Expansion of g.f. sqrt( (1+x - sqrt(1-18*x+x^2)) / (10*x*(1-18*x+x^2)) ). 8
 1, 11, 155, 2365, 37555, 610897, 10098997, 168894355, 2849270515, 48395044705, 826479148001, 14177519463191, 244109912494525, 4216385987238575, 73024851218517275, 1267712063327871245, 22052786911315216595, 384321597582115655825, 6708530714274563938225 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Multiply the square of each term by 5 to form a bisection of A243945. Limit a(n+1)/a(n) = 9 + 4*sqrt(5). LINKS Seiichi Manyama, Table of n, a(n) for n = 0..500 FORMULA a(n)^2 = (1/5) * Sum_{k=0..2*n+1} C(2*k, k)^2 * C(2*n+k+1, 2*n-k+1). a(n) ~ (9+4*sqrt(5))^(n+1) / (2*5^(1/4)*sqrt(2*Pi*n) * sqrt(5+2*sqrt(5))). - Vaclav Kotesovec, Aug 18 2014 From Peter Bala, Mar 15 2018: (Start) a(n) = 1/sqrt(5)*P(2*n+1,sqrt(5)), where P(n,x) denotes the n-th Legendre polynomial. See A008316. a(n) = Sum_{k = 0..n} 1/2*C(2*k+1,k)*C(n,k)*C(2*n+2*k+2,2*n+1) /C(n+k+1,n). In general, 1/sqrt(1 + 4*x)*P(2*n+1,sqrt(1+4*x)) = 1/(2*C(2*n+1,n)) * Sum_{k = 0..n} C(n,k)*C(n+k+1,k) *C(2*n+2*k+2,n+k+1)*x^k. a(n) = 1/sqrt(5)*Sum_{k = 0..2*n+1} C(2*n+1,k)^2 * phi^(2*n-2*k+1), where phi = (sqrt(5) + 1)/2. a(n) = 1/sqrt(5)*Sum_{k = 0..2*n+1} C(2*n+1,k)*C(2*n+1+k,k) * Phi^k, where Phi = (sqrt(5) - 1)/2. (End) a(n) = hypergeom([-n, n + 3/2], [1], -4). - Peter Luschny, Mar 16 2018 From Peter Bala, Mar 17 2018: (Start) a(n) = Sum_{k = 0..n} C(2*n+1,2*k)*C(2*k,k)*5^(n-k). D-finite with recurrence: n*(4*n-3)*(2*n+1)*a(n) = (4*n-1)*(36*n^2-18*n-7)*a(n-1) - (n-1)*(2*n-1)*(4*n+1)*a(n-2). (End) EXAMPLE G.f.: A(x) = 1 + 11*x + 155*x^2 + 2365*x^3 + 37555*x^4 + 610897*x^5 +... where A(x)^2 = (1+x - sqrt(1-18*x+x^2)) / (10*x*(1-18*x+x^2)). MAPLE seq(add(1/2*binomial(2*k+1, k)*binomial(n, k)*binomial(2*n+2*k+2, 2*n+1)/binomial(n+k+1, n), k = 0..n), n = 0..20); # Peter Bala, Mar 15 2018 MATHEMATICA CoefficientList[Series[Sqrt[((1+x-Sqrt[1-18x+x^2]))/(10x(1-18x+x^2))], {x, 0, 20}], x] (* Harvey P. Dale, Jul 31 2016 *) a[n_] := Hypergeometric2F1[-n, n + 3/2, 1, -4]; Table[a[n], {n, 0, 18}] (* Peter Luschny, Mar 16 2018 *) PROG (PARI) /* From definition: */ {a(n)=polcoeff( sqrt( (1+x - sqrt(1-18*x+x^2 +x^2*O(x^n))) / (10*x*(1-18*x+x^2 +x*O(x^n))) ), n)} for(n=0, 20, print1(a(n), ", ")) (PARI) /* From a(n) = sqrt( A243945(2*n+1)/5 ): */ {a(n)=sqrtint( (1/5)*sum(k=0, 2*n+1, binomial(2*k, k)^2*binomial(2*n+k+1, 2*n-k+1)) )} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A243945, A243946, A084769, A245927, A008316. Sequence in context: A223713 A223779 A191534 * A156933 A242008 A158512 Adjacent sequences:  A243944 A243945 A243946 * A243948 A243949 A243950 KEYWORD nonn,easy AUTHOR Paul D. Hanna, Aug 17 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 04:10 EDT 2021. Contains 345354 sequences. (Running on oeis4.)