login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008316 Triangle of coefficients of Legendre polynomials P_n (x). 19
1, 1, -1, 3, -3, 5, 3, -30, 35, 15, -70, 63, -5, 105, -315, 231, -35, 315, -693, 429, 35, -1260, 6930, -12012, 6435, 315, -4620, 18018, -25740, 12155, -63, 3465, -30030, 90090, -109395, 46189, -693, 15015, -90090, 218790, -230945, 88179, 231, -18018, 225225, -1021020, 2078505, -1939938, 676039 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.

LINKS

T. D. Noe, Rows n=0..100 of triangle, flattened

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

T. Copeland, The Elliptic Lie Triad: Riccati and KdV Equations, Infinigens, and Elliptic Genera, see the Additional Notes section, 2015.

H. N. Laden, An historical, and critical development of the theory of Legendre polynomials before 1900, Master of Arts Thesis, University of Maryland 1938.

Eric Weisstein's World of Mathematics, Legendre Polynomial

EXAMPLE

Triangle starts:

1;

1;

-1, 3;

-3, 5;

3, -30, 35;

15, -70, 63;

...

P_5(x) = (15*x - 70*x^3 + 63*x^5)/8 so T(5, ) = (15, -70, 63). P_6(x) = (-5 + 105*x^2 - 315*x^4 + 231*x^6)/16 so T(6, ) = (-5, 105, -315, 231). - Michael Somos, Oct 24 2002

MATHEMATICA

Flatten[Table[(LegendreP[i, x]/.{Plus->List, x->1})Max[ Denominator[LegendreP[i, x]/.{Plus->List, x->1}]], {i, 0, 12}]]

PROG

(PARI) {T(n, k) = if( n<0, 0, polcoeff( pollegendre(n) * 2^valuation( (n\2*2)!, 2), n%2 + 2*k))}; /* Michael Somos, Oct 24 2002 */

CROSSREFS

Cf. A001790, A001800, A001801.

With zeros: A100258.

Cf. A121448.

Sequence in context: A094439 A122037 A201454 * A335952 A290284 A258802

Adjacent sequences: A008313 A008314 A008315 * A008317 A008318 A008319

KEYWORD

sign,tabf,easy,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Vit Planocka (planocka(AT)mistral.cz), Sep 28 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 19:04 EST 2022. Contains 358588 sequences. (Running on oeis4.)