login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A100258 Triangle of coefficients of normalized Legendre polynomials, with increasing exponents. 13
1, 0, 1, -1, 0, 3, 0, -3, 0, 5, 3, 0, -30, 0, 35, 0, 15, 0, -70, 0, 63, -5, 0, 105, 0, -315, 0, 231, 0, -35, 0, 315, 0, -693, 0, 429, 35, 0, -1260, 0, 6930, 0, -12012, 0, 6435, 0, 315, 0, -4620, 0, 18018, 0, -25740, 0, 12155, -63, 0, 3465, 0, -30030, 0, 90090, 0, -109395, 0, 46189 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

For a relation to Jacobi quartic elliptic curves, see the MathOverflow link. For a self-convolution of the polynomials relating them to the Chebyshev and Fibonacci polynomials, see A049310 and A053117. For congruences and connections to other polynomials (Jacobi, Gegenbauer, and Chebyshev) see the Allouche et al. link. For relations to elliptic cohomology and modular forms, see references in Copeland link.- Tom Copeland, Feb 04 2016

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.

LINKS

T. D. Noe, Rows n=0..100 of triangle, flattened

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

J. Allouche and G. Skordev, Schur congruences, Carlitz sequences of polynomials and automaticity, Discrete Mathematics, Vol. 214, Issue 1-3, 21 March 2000, p. 21-49.

Tom Copeland, The Elliptic Lie Triad: Riccati and KdV Equations, Infinigens, and Elliptic Genera

Shi-Mei Ma, On gamma-vectors and the derivatives of the tangent and secant functions, arXiv:1304.6654 [math.CO], 2013.

MathOverflow, Geometric picture of invariant differential of an elliptic curve, Dec 4 2011.

FORMULA

The n-th normalized Legendre polynomial is generated by 2^(-n-a(n)) (d/dx)^n (x^2-1)^n / n! with a(n) = A005187(n/2) for n even and a(n) = A005187((n-1)/2) for n odd. The non-normalized polynomials have the o.g.f. 1 / sqrt(1 - 2xz + z^2). - Tom Copeland, Feb 07 2016

The consecutive nonzero entries in the m-th row are, in order, (c+b)!/(c!(m-b)!(2b-m)!*A048896(m-1)) with sign (-1)^b where c = m/2-1, m/2, m/2+1, ..., (m-1) and b = c+1 if m is even and sign (-1)^c with c = (m-1)/2, (m-1)/2+1, (m-1)/2+2, ..., (m-1) with b = c+1 if m is odd. For the 9th row the 5 consecutive nonzero entries are 315, -4620, 18018, -25740, 12155 given by c = 4,5,6,7,8 and b = 5,6,7,8,9. - Richard Turk, Aug 22 2017

EXAMPLE

Triangle begins:

   1;

   0,   1;

  -1,   0,     3;

   0,  -3,     0,   5;

   3,   0,   -30,   0,   35;

   0,  15,     0, -70,    0,   63;

  -5,   0,   105,   0, -315,    0,    231;

   0, -35,     0, 315,    0, -693,      0, 429;

  35,   0, -1260,   0, 6930,    0, -12012,   0, 6435;

  ...

MATHEMATICA

row[n_] := CoefficientList[ LegendreP[n, x], x]*2^IntegerExponent[n!, 2]; Table[row[n], {n, 0, 10}] // Flatten (* Jean-Fran├žois Alcover, Jan 15 2015 *)

PROG

(PARI) a(k, n)=polcoeff(pollegendre(k, x), n)*2^valuation(k!, 2)

(Python)

from mpmath import *

mp.dps=20

def a007814(n): return 1 + bin(n - 1)[2:].count('1') - bin(n)[2:].count('1')

for n in range(11):

    y=2**(a007814(int(fac(n))))

    l=(chop(taylor(lambda x: legendre(n, x), 0, n)))

    print [int(i*y) for i in l] # Indranil Ghosh, Jul 02 2017

CROSSREFS

Without zeros: A008316. Row sums are A060818.

Columns (with interleaved zeros and signs) include A001790, A001803, A100259. Diagonals include A001790, A001800, A001801, A001802.

Cf. A049310, A005187, A049600, A053117.

Sequence in context: A291971 A240923 A272727 * A045763 A132748 A022901

Adjacent sequences:  A100255 A100256 A100257 * A100259 A100260 A100261

KEYWORD

sign,tabl

AUTHOR

Ralf Stephan, Nov 13 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 13:27 EST 2018. Contains 299581 sequences. (Running on oeis4.)