login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100261
Continued fraction expansion of cot(1-Pi/4).
3
4, 1, 1, 2, 2, 1, 16, 1, 4, 2, 5, 1, 28, 1, 7, 2, 8, 1, 40, 1, 10, 2, 11, 1, 52, 1, 13, 2, 14, 1, 64, 1, 16, 2, 17, 1, 76, 1, 19, 2, 20, 1, 88, 1, 22, 2, 23, 1, 100, 1, 25, 2, 26, 1, 112, 1, 28, 2, 29, 1, 124, 1, 31, 2, 32, 1, 136, 1, 34, 2, 35, 1, 148, 1, 37, 2, 38, 1, 160, 1, 40
OFFSET
1,1
REFERENCES
Lipshitz, Leonard, and A. van der Poorten. "Rational functions, diagonals, automata and arithmetic." In Number Theory, Richard A. Mollin, ed., Walter de Gruyter, Berlin (1990): 339-358.
LINKS
A. J. Van der Poorten, Continued fraction expansions of values of the exponential function and related fun with continued fractions, Nieuw Archief voor Wiskunde, Vol. 14 (1996), pp. 221-230.
FORMULA
This number is also -Im[ (e^(2i)+i)/(e^(2i)-i) ].
Periodic part is ...2, 3k+2, 1, 12k+16, 1, 3k+4, ... (k=0..oo).
G.f.: -x*(x^11-x^10+2*x^9-2*x^8+x^7-8*x^6-x^5-2*x^4-2*x^3-x^2-x-4) / ((x-1)^2*(x+1)^2*(x^2-x+1)^2*(x^2+x+1)^2). - Colin Barker, Jul 15 2013
EXAMPLE
4.588037824983899981397906503733748769677138839382189177607356840...
MATHEMATICA
ContinuedFraction[ -Im[(E^(2I) + I)/(E^(2I) - I)], 80] (* Robert G. Wilson v, Nov 20 2004 *)
PROG
(PARI) A100261(n) = if(1==n, 4, if(n<4, 1, n=n-4; my(k=n\6); if(!(n%6), 2, if(1==(n%6), 3*k + 2, if(3==(n%6), 12*k + 16, if(5==(n%6), 3*k + 4, 1)))))); \\ Antti Karttunen, Feb 15 2023
CROSSREFS
Cf. A005131.
Sequence in context: A073693 A360916 A360918 * A370945 A016526 A247341
KEYWORD
nonn,cofr,easy
AUTHOR
Ralf Stephan, Nov 18 2004
STATUS
approved