login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370945
Number T(n,k) of partitions of [n] whose singletons sum to k; triangle T(n,k), n>=0, 0<=k<=A000217(n), read by rows.
3
1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 4, 1, 1, 2, 2, 2, 1, 1, 0, 0, 1, 11, 4, 4, 5, 5, 6, 3, 3, 3, 3, 2, 1, 1, 0, 0, 1, 41, 11, 11, 15, 15, 19, 20, 13, 10, 11, 8, 8, 5, 4, 4, 3, 2, 1, 1, 0, 0, 1, 162, 41, 41, 52, 52, 63, 67, 78, 41, 45, 39, 39, 33, 30, 20, 17, 14, 10, 10, 6, 5, 4, 3, 2, 1, 1, 0, 0, 1
OFFSET
0,15
LINKS
FORMULA
Sum_{k=0..A000217(n)} k * T(n,k) = A105479(n+1).
T(n,A161680(n)) = A370946(n).
T(n,A000217(n)) = 1.
EXAMPLE
T(4,0) = 4: 1234, 12|34, 13|24, 14|23.
T(4,1) = 1: 1|234.
T(4,2) = 1: 134|2.
T(4,3) = 2: 124|3, 1|2|34.
T(4,4) = 2: 123|4, 1|24|3.
T(4,5) = 2: 1|23|4, 14|2|3.
T(4,6) = 1: 13|2|4.
T(4,7) = 1: 12|3|4.
T(4,10) = 1: 1|2|3|4.
Triangle T(n,k) begins:
1;
0, 1;
1, 0, 0, 1;
1, 1, 1, 1, 0, 0, 1;
4, 1, 1, 2, 2, 2, 1, 1, 0, 0, 1;
11, 4, 4, 5, 5, 6, 3, 3, 3, 3, 2, 1, 1, 0, 0, 1;
...
MAPLE
h:= proc(n) option remember; `if`(n=0, 1,
add(h(n-j)*binomial(n-1, j-1), j=2..n))
end:
b:= proc(n, i, m) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, h(m), b(n, i-1, m)+b(n-i, min(n-i, i-1), m-1)))
end:
T:= (n, k)-> b(k, min(n, k), n):
seq(seq(T(n, k), k=0..n*(n+1)/2), n=0..7);
MATHEMATICA
h[n_] := h[n] = If[n == 0, 1,
Sum[h[n-j]*Binomial[n-1, j-1], {j, 2, n}]];
b[n_, i_, m_] := b[n, i, m] = If[n > i*(i + 1)/2, 0,
If[n == 0, h[m], b[n, i - 1, m] + b[n - i, Min[n - i, i - 1], m - 1]]];
T[n_, k_] := b[k, Min[n, k], n];
Table[Table[T[n, k], { k, 0, n*(n + 1)/2}], {n, 0, 7}] // Flatten (* Jean-François Alcover, Mar 12 2024, after Alois P. Heinz *)
CROSSREFS
Column k=0 gives A000296.
Row sums give A000110.
Row lengths give A000124.
Reversed rows converge to A370946.
T(n,n) gives A370947.
Sequence in context: A360916 A360918 A100261 * A016526 A247341 A030747
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Mar 06 2024
STATUS
approved