login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369596
Number T(n,k) of permutations of [n] whose fixed points sum to k; triangle T(n,k), n>=0, 0<=k<=A000217(n), read by rows.
4
1, 0, 1, 1, 0, 0, 1, 2, 1, 1, 1, 0, 0, 1, 9, 2, 2, 3, 3, 2, 1, 1, 0, 0, 1, 44, 9, 9, 11, 11, 13, 5, 5, 4, 4, 2, 1, 1, 0, 0, 1, 265, 44, 44, 53, 53, 62, 64, 29, 22, 24, 16, 16, 8, 6, 5, 4, 2, 1, 1, 0, 0, 1, 1854, 265, 265, 309, 309, 353, 362, 406, 150, 159, 126, 126, 93, 86, 44, 36, 29, 19, 19, 9, 7, 5, 4, 2, 1, 1, 0, 0, 1
OFFSET
0,8
LINKS
Wikipedia, Permutation
FORMULA
Sum_{k=0..A000217(n)} k * T(n,k) = A001710(n+1) for n >= 1.
Sum_{k=0..A000217(n)} (1+k) * T(n,k) = A038720(n) for n >= 1.
Sum_{k=0..A000217(n)} (n*(n+1)/2-k) * T(n,k) = A317527(n+1).
T(n,A161680(n)) = A331518(n).
T(n,A000217(n)) = 1.
EXAMPLE
T(3,0) = 2: 231, 312.
T(3,1) = 1: 132.
T(3,2) = 1: 321.
T(3,3) = 1: 213.
T(3,6) = 1: 123.
T(4,0) = 9: 2143, 2341, 2413, 3142, 3412, 3421, 4123, 4312, 4321.
Triangle T(n,k) begins:
1;
0, 1;
1, 0, 0, 1;
2, 1, 1, 1, 0, 0, 1;
9, 2, 2, 3, 3, 2, 1, 1, 0, 0, 1;
44, 9, 9, 11, 11, 13, 5, 5, 4, 4, 2, 1, 1, 0, 0, 1;
...
MAPLE
b:= proc(s) option remember; (n-> `if`(n=0, 1, add(expand(
`if`(j=n, x^j, 1)*b(s minus {j})), j=s)))(nops(s))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b({$1..n})):
seq(T(n), n=0..7);
# second Maple program:
g:= proc(n) option remember; `if`(n=0, 1, n*g(n-1)+(-1)^n) end:
b:= proc(n, i, m) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, g(m), b(n, i-1, m)+b(n-i, min(n-i, i-1), m-1)))
end:
T:= (n, k)-> b(k, min(n, k), n):
seq(seq(T(n, k), k=0..n*(n+1)/2), n=0..7);
MATHEMATICA
g[n_] := g[n] = If[n == 0, 1, n*g[n - 1] + (-1)^n];
b[n_, i_, m_] := b[n, i, m] = If[n > i*(i + 1)/2, 0,
If[n == 0, g[m], b[n, i-1, m] + b[n-i, Min[n-i, i-1], m-1]]];
T[n_, k_] := b[k, Min[n, k], n];
Table[Table[T[n, k], {k, 0, n*(n + 1)/2}], {n, 0, 7}] // Flatten (* Jean-François Alcover, May 24 2024, after Alois P. Heinz *)
CROSSREFS
Column k=0 gives A000166.
Column k=3 gives A000255(n-2) for n>=2.
Row sums give A000142.
Row lengths give A000124.
Reversed rows converge to A331518.
T(n,n) gives A369796.
Sequence in context: A089053 A214979 A068462 * A054973 A030351 A257994
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Mar 02 2024
STATUS
approved