login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263756
Triangle read by rows: T(n,k) (n>=0, k>=0) is the number of permutations of n with sum of descent bottoms equal to k.
5
1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 3, 8, 3, 1, 1, 1, 15, 7, 34, 18, 14, 18, 8, 3, 1, 1, 1, 31, 15, 122, 72, 69, 147, 83, 71, 33, 45, 18, 8, 3, 1, 1, 1, 63, 31, 406, 252, 263, 822, 544, 554, 399, 613, 351, 307, 160, 102, 96, 45, 18, 8, 3, 1, 1, 1, 127, 63, 1298, 828
OFFSET
0,6
COMMENTS
Row sums give A000142.
LINKS
FindStat - Combinatorial Statistic Finder, The sum of the descent bottoms of a permutations.
EXAMPLE
Triangle begins:
1;
1;
1,1;
1,3,1,1;
1,7,3,8,3,1,1;
1,15,7,34,18,14,18,8,3,1,1;
1,31,15,122,72,69,147,83,71,33,45,18,8,3,1,1;
...
MAPLE
b:= proc(s) option remember; (n-> `if`(n=0, 1, expand(
add(b(s minus {j})*`if`(j<n, x^j, 1), j=s))))(nops(s))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b({$1..n})):
seq(T(n), n=0..9); # Alois P. Heinz, Oct 25 2015, revised, Jan 31 2023
MATHEMATICA
b[s_] := b[s] = With[{n = Length[s]}, If[n == 0, 1, Expand[ Sum[b[s~Complement~{j}]*If[j < n, x^j, 1], {j, s}]]]];
T[n_] := CoefficientList[b[Range[n]], x];
Table[T[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, May 26 2023, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A257100 A152884 A360288 * A204984 A335341 A243473
KEYWORD
nonn,tabf
AUTHOR
Christian Stump, Oct 19 2015
EXTENSIONS
Two terms (for rows 0 and 1) prepended and more terms from Alois P. Heinz, Oct 25 2015
STATUS
approved