login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257100
From fourth root of the inverse of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose fourth power is 1/zeta; sequence gives numerator of b(n).
4
1, -1, -1, -3, -1, 1, -1, -7, -3, 1, -1, 3, -1, 1, 1, -77, -1, 3, -1, 3, 1, 1, -1, 7, -3, 1, -7, 3, -1, -1, -1, -231, 1, 1, 1, 9, -1, 1, 1, 7, -1, -1, -1, 3, 3, 1, -1, 77, -3, 3, 1, 3, -1, 7, 1, 7, 1, 1, -1, -3, -1, 1, 3, -1463, 1, -1, -1, 3, 1, -1, -1, 21, -1, 1, 3, 3, 1, -1, -1, 77, -77, 1, -1, -3, 1, 1, 1, 7, -1, -3, 1, 3, 1, 1, 1, 231, -1, 3, 3, 9
OFFSET
1,4
COMMENTS
Dirichlet g.f. of b(n) = a(n)/A256691(n) is (zeta (x))^(-1/4).
Denominator is the same as for Dirichlet g.f. (zeta(x))^(+1/4).
Formula holds for general Dirichlet g.f. zeta(x)^(-1/k) with k = 1, 2, ...
LINKS
FORMULA
with k = 4;
zeta(x)^(-1/k) = Sum_{n>=1} b(n)/n^x;
c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;
Then solve c(k,n) = mu(n) for b(m);
a(n) = numerator(b(n)).
MATHEMATICA
k = 4;
c[1, n_] = b[n];
c[k_, n_] := DivisorSum[n, c[1, #1]*c[k - 1, n/#1] & ]
nn = 100; eqs = Table[c[k, n]==MoebiusMu[n], {n, 1, nn}];
sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals];
t = Table[b[n], {n, 1, nn}] /. sol[[1]];
num = Numerator[t] (* A257100 *)
den = Denominator[t] (* A256691 *)
CROSSREFS
Cf. family zeta^(-1/k): A257098/A046644 (k=2), A257099/A256689 (k=3), A257100/A256691 (k=4), A257101/A256693 (k=5).
Cf. family zeta^(+1/k): A046643/A046644 (k=2), A256688/A256689 (k=3), A256690/A256691 (k=4), A256692/A256693 (k=5).
Sequence in context: A185587 A068845 A324910 * A152884 A360288 A263756
KEYWORD
sign
AUTHOR
Wolfgang Hintze, Apr 16 2015
STATUS
approved