

A257102


Decimal expansion of A, a constant related to one of Arnold's problems: measuring the randomness of modular arithmetic progressions.


0



1, 0, 2, 7, 3, 4, 0, 4, 2, 6, 8, 8, 8, 9, 0, 7, 5, 1, 8, 5, 0, 6, 6, 4, 7, 8, 3, 6, 9, 1, 7, 1, 3, 9, 7, 0, 1, 0, 2, 3, 3, 2, 8, 1, 5, 5, 2, 0, 4, 9, 1, 3, 1, 5, 0, 2, 0, 0, 5, 2, 9, 0, 1, 8, 3, 9, 9, 4, 4, 3, 9, 7, 1, 4, 6, 1, 9, 6, 2, 9, 3, 6, 6, 3, 8, 0, 4, 8, 3, 2, 2, 3, 9, 0, 0, 4, 3, 2, 5, 2, 7, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


LINKS

Table of n, a(n) for n=1..102.
Eda Cesaratto, Alain Plagne and Brigitte Vallée, On the nonrandomness of modular arithmetic progressions: a solution to a problem by V. I. Arnold, Discrete Mathematics and Theoretical Computer Science Proceedings, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities (2006), p. 20.


FORMULA

A = (1/log(2))*Integral_{1..2} (1/3)*(2/y + 2/y^2  1/y^3) + (y1)*(1/(6*y) + 1/(6*y^2)  1/(3*y^3)) dy.
A = 2/3 + 1/(4*log(2)).


EXAMPLE

1.027340426888907518506647836917139701023328155204913150200529...


MATHEMATICA

RealDigits[2/3 + 1/(4*Log[2]), 10, 102] // First


PROG

(PARI) 1/4/log(2)+2/3 \\ Charles R Greathouse IV, Apr 23 2015


CROSSREFS

Sequence in context: A248140 A088538 A210516 * A226626 A249778 A326661
Adjacent sequences: A257099 A257100 A257101 * A257103 A257104 A257105


KEYWORD

nonn,cons,easy


AUTHOR

JeanFrançois Alcover, Apr 23 2015


STATUS

approved



