login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371707
Constant r > 0 satisfying: Sum_{n>=0} (r^n + 2*Pi*i)^n/n! = C + i*S such that C^2 + S^2 = 1.
1
2, 7, 3, 4, 3, 9, 0, 0, 1, 9, 0, 8, 5, 6, 8, 3, 8, 5, 5, 3, 8, 7, 9, 1, 7, 5, 8, 0, 0, 4, 6, 9, 8, 1, 5, 0, 2, 4, 0, 1, 7, 4, 5, 5, 6, 0, 1, 9, 5, 3, 7, 4, 0, 3, 7, 9, 5, 7, 8, 7, 7, 4, 6, 4, 5, 0, 9, 3, 5, 0, 8, 6, 8, 8, 7, 8, 4, 2, 8, 6, 6, 5, 9, 7, 5, 4, 3, 3, 8, 7, 4, 2, 2, 9, 6, 2, 1, 9, 5, 2
OFFSET
0,1
COMMENTS
Related identity: Sum_{n>=0} (x^n + y)^n/n! = Sum_{n>=0} exp(y*x^n)*x^(n^2)/n!. Here, x = r and y = 2*Pi*i.
What are the roots of Norm( Sum_{n>=0} (x^n + 2*Pi*i)^n/n! ) = 1? The real roots include x = 0 and x = r (this constant).
LINKS
FORMULA
Constant r and related values C and S satisfy the following formulas.
(1) Sum_{n>=0} (r^n + 2*Pi*i)^n/n! = C + i*S such that C^2 + S^2 = 1.
(2) C = Sum_{n>=0} cos(2*Pi*r^n) * r^(n^2) / n!.
(3) S = Sum_{n>=0} sin(2*Pi*r^n) * r^(n^2) / n!.
EXAMPLE
The initial 500 digits of this constant r are
r = 0.27343900190856838553879175800469815024017455601953\
74037957877464509350868878428665975433874229621952\
21271807208862504474781327669150216691806622917186\
30052292342530146845288659570856888661537928135397\
91914154858221560663972999347727219299210079054658\
20785838554943078876634169703813817526574697076018\
43103025671330263969269247113168608393647224573552\
82695245129846145197371729802801821910764770241403\
85315562772171090016733480930506290614196661276630\
35680469795753191100711562687066719873558759501438...
Given Sum_{n>=0} (r^n + 2*Pi*i)^n / n! = C + i*S
then C = Sum_{n>=0} cos(2*Pi*r^n) * r^(n^2) / n!, where
C = 0.96236940120128609855708390989630224707797733780139\
33346689286186097367092064030604732865267035268595\
44279783779811281344593178122348416729686502694192\
27215955652725928674242226419071059523037649451781\
36060669147586159699815697962817267659814744582224\
93126268783872251860132042094952557434607056861286\
20902477149931860926346847824008347947488598827305\
47837372109484356517193566333052743194953698066525\
72228584587713864226102674129509160583381421007047\
75118828482389128699072732009353421657729660481717...
and S = Sum_{n>=0} sin(2*Pi*r^n) * r^(n^2) / n!, where
S = 0.27174461472396842102515050866607715426951746748919\
04159412993022348271493896385066506863889535797824\
35085649751784233166430963459007191963331589808443\
52259856849111637575812332490848107413710402589323\
75221334357855133874979455560441735994213395179878\
38917993730963815574520261440791182088848636006332\
68221934823032560291871222621378256174374612116671\
09358271083370500808439006024716239994653435216572\
21204963868973568338610259219318795040671357965613\
68248089245008828798740589773672045329008665505374...
such that C^2 + S^2 = 1.
CROSSREFS
Cf. A326600.
Sequence in context: A088538 A210516 A257102 * A226626 A249778 A350505
KEYWORD
nonn,cons
AUTHOR
Paul D. Hanna, Apr 09 2024
STATUS
approved