login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257105
Composite numbers n such that n'=(n+8)', where n' is the arithmetic derivative of n.
0
132, 476, 2108, 16748, 27548, 28676, 99524, 100076, 239948, 308228, 344129, 573476, 601676, 822908, 860276, 883268, 1673228, 3274010, 4959476, 7548956, 8916044, 9048428, 9215348, 9643169, 9833588, 10011908, 14773676, 17119436, 18529964, 19459028, 21335948, 21739148
OFFSET
1,1
COMMENTS
If the limitation of being composite is removed we also have the numbers p such that if p is prime then p + 8 is prime too (A023202).
EXAMPLE
132' = (132 + 8)' = 140' = 188;
476' = (476 + 8)' = 484' = 572.
MAPLE
with(numtheory); P:= proc(q, h) local a, b, n, p;
for n from 1 to q do if not isprime(n) then a:=n*add(op(2, p)/op(1, p), p=ifactors(n)[2]); b:=(n+h)*add(op(2, p)/op(1, p), p=ifactors(n+h)[2]);
if a=b then print(n); fi; fi; od; end: P(10^9, 8);
MATHEMATICA
a[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]];
Select[Range@ 100000, And[CompositeQ@ #, a@# == a[# + 8]] &] (* Michael De Vlieger, Apr 22 2015, after Michael Somos at A003415 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Apr 17 2015
STATUS
approved